当前位置: X-MOL 学术Annu. Rev. Phys. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Chiral Plasmonic Nanostructures Enabled by Bottom-Up Approaches
Annual Review of Physical Chemistry ( IF 11.7 ) Pub Date : 2019-06-07 00:00:00 , DOI: 10.1146/annurev-physchem-050317-021332
Maximilian J. Urban 1 , Chenqi Shen 2 , Xiang-Tian Kong 3 , Chenggan Zhu 2 , Alexander O. Govorov 3, 4 , Qiangbin Wang 2, 5 , Mario Hentschel 6 , Na Liu 1, 7
Affiliation  

We present a comprehensive review of recent developments in the field of chiral plasmonics. Significant advances have been made recently in understanding the working principles of chiral plasmonic structures. With advances in micro- and nanofabrication techniques, a variety of chiral plasmonic nanostructures have been experimentally realized; these tailored chiroptical properties vastly outperform those of their molecular counterparts. We focus on chiral plasmonic nanostructures created using bottom-up approaches, which not only allow for rational design and fabrication but most intriguingly in many cases also enable dynamic manipulation and tuning of chiroptical responses. We first discuss plasmon-induced chirality, resulting from the interaction of chiral molecules with plasmonic excitations. Subsequently, we discuss intrinsically chiral colloids, which give rise to optical chirality owing to their chiral shapes. Finally, we discuss plasmonic chirality, achieved by arranging achiral plasmonic particles into handed configurations on static or active templates. Chiral plasmonic nanostructures are very promising candidates for real-life applications owing to their significantly larger optical chirality than natural molecules. In addition, chiral plasmonic nanostructures offer engineerable and dynamic chiroptical responses, which are formidable to achieve in molecular systems. We thus anticipate that the field of chiral plasmonics will attract further widespread attention in applications ranging from enantioselective analysis to chiral sensing, structural determination, and in situ ultrasensitive detection of multiple disease biomarkers, as well as optical monitoring of transmembrane transport and intracellular metabolism.

中文翻译:


自下而上的方法使手性等离子体纳米结构成为可能。

我们对手性等离子体领域的最新进展进行了全面的审查。最近在理解手性等离子体结构的工作原理方面取得了重大进展。随着微细加工和纳米加工技术的进步,已经通过实验实现了各种手性等离子体纳米结构。这些定制的手性学特性大大优于其分子同类物。我们专注于使用自下而上的方法创建的手性等离激元纳米结构,不仅可以进行合理的设计和制造,而且在许多情况下最引人入胜的是,还可以实现对手性响应的动态操纵和调整。我们首先讨论由等离激元分子与等离激元激发相互作用产生的等离激元诱导的手性。随后,我们讨论固有的手性胶体,由于它们的手性形状而引起光学手性。最后,我们讨论了通过将非手性等离子体粒子排列成静态或活动模板上的手动配置来实现的等离子体手性。由于手性等离子体纳米结构的光学手性比天然分子大得多,因此它们在现实生活中是非常有前途的候选物。另外,手性等离子体纳米结构提供了可工程的和动态的手性响应,这在分子系统中是难以实现的。因此,我们预计手性等离子体领域将在从对映选择性分析到手性传感,结构确定以及多种疾病生物标记物的原位超灵敏检测等应用中吸引更多的关注,

更新日期:2019-06-07
down
wechat
bug