当前位置: X-MOL 学术Small Methods › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synthesis Strategies and Structural Design of Porous Carbon‐Incorporated Anodes for Sodium‐Ion Batteries
Small Methods ( IF 10.7 ) Pub Date : 2019-05-22 , DOI: 10.1002/smtd.201900163
Enhui Wang 1, 2 , Mingzhe Chen 2 , Xiaodong Guo 1 , Shu‐Lei Chou 2 , Benhe Zhong 1 , Shi‐Xue Dou 2
Affiliation  

Over the past decades, porous carbonaceous and carbon‐incorporated composites have aroused tremendous attention owing to their unique properties such as high surface area, excellent accessibility to active sites, tunable morphologies and structures, and superior mass transport and diffusion. They have been widely investigated and applied in various fields, such as energy storage, absorption, water filtration, drug delivery, catalysis, and sensing. In the energy storage area, rechargeable sodium‐ion batteries (SIBs) have attracted tremendous attention as the next‐generation power plants for large‐scale energy storage systems (EESs). However, their low energy density and power density, as well as their poor cyclability, are still the main challenges for SIBs, especially for the anode, which acts as a bottleneck. With the incorporation of appropriate porous carbonaceous materials, the disadvantages of large volume shrinkage and low electron conductivity of alloying‐ and conversion‐based anode materials have been significantly alleviated. This review points out and summarizes the most recent developments in synthesis strategies and morphology control of porous carbonaceous materials and the corresponding carbonaceous‐material‐incorporated high performance anodes for SIBs. Furthermore, the remaining challenges associated with these composites and effective routes to enhance their performance are discussed.

中文翻译:

钠离子电池含碳多孔阳极的合成策略和结构设计

在过去的几十年中,多孔碳质和含碳复合材料因其独特的特性(例如高表面积,出色的活性位点可访问性,可调整的形态和结构以及出色的质量传输和扩散)而引起了极大的关注。它们已被广泛研究并应用于各个领域,例如能量存储,吸收,水过滤,药物输送,催化和传感。在储能领域,可充电钠离子电池(SIB)作为大型储能系统(EES)的下一代发电厂受到了极大的关注。但是,它们的低能量密度和功率密度以及较差的可循环性仍然是SIB的主要挑战,特别是对于作为瓶颈的阳极而言。通过掺入适当的多孔碳质材料,合金化和转化基阳极材料的大体积收缩和低电子电导率的弊端得到了明显缓解。这篇评论指出并总结了多孔碳质材料以及相应的掺有碳质材料的SIB高性能阳极的合成策略和形态控制的最新进展。此外,还讨论了与这些复合材料相关的剩余挑战以及增强其性能的有效途径。这篇评论指出并总结了多孔碳质材料以及相应的掺有碳质材料的SIB高性能阳极的合成策略和形态控制的最新进展。此外,还讨论了与这些复合材料相关的剩余挑战以及增强其性能的有效途径。这篇评论指出并总结了多孔碳质材料以及相应的掺有碳质材料的SIB高性能阳极的合成策略和形态控制的最新进展。此外,还讨论了与这些复合材料相关的剩余挑战以及增强其性能的有效途径。
更新日期:2019-05-22
down
wechat
bug