当前位置: X-MOL 学术Semin. Cell Dev. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
CRISPR-Cas9 directed genome engineering for enhancing salt stress tolerance in rice.
Seminars in Cell & Developmental Biology ( IF 6.2 ) Pub Date : 2019-05-21 , DOI: 10.1016/j.semcdb.2019.05.003
Sufia Farhat 1 , Neha Jain 1 , Nisha Singh 1 , Rohini Sreevathsa 1 , Prasanta K Dash 1 , Rhitu Rai 1 , Sandeep Yadav 2 , Pramod Kumar 2 , Ananda K Sarkar 2 , Ajay Jain 3 , Nagendra K Singh 1 , Vandna Rai 1
Affiliation  

Crop productivity in rice is harshly limited due to high concentration of salt in the soil. To understand the intricacies of the mechanism it is important to unravel the key pathways operating inside the plant cell. Emerging state-of-the art technologies have provided the tools to discover the key components inside the plant cell for salt tolerance. Among the molecular entities, transcription factors and/or other important components of sensing and signaling cascades have been the attractive targets and the role of NHX and SOS1 transporters amply described. Not only marker assisted programs but also transgenic approaches by using reverse genetic strategies (knockout or knockdown) or overexpression have been extensively used to engineer rice crop. CRISPR/Cas is an attractive paradigm and provides the feasibility for manipulating several genes simultaneously. Here, in this review we highlight some of the molecular entities that could be potentially targeted for generating rice amenable to sustain growth under high salinity conditions by employing CRISPR/Cas. We also try to address key questions for rice salt stress tolerance other than what is already known.

中文翻译:

CRISPR-Cas9指导的基因组工程,用于增强水稻的盐胁迫耐受性。

由于土壤中盐分的高浓度,水稻的农作物生产力受到严重限制。要了解这种机制的复杂性,重要的是要阐明植物细胞内部运作的关键途径。新兴的最新技术提供了发现植物细胞内关键成分以提高耐盐性的工具。在分子实体中,转录因子和/或传感和信号级联反应的其他重要组成部分已成为有吸引力的目标,并充分描述了NHX和SOS1转运蛋白的作用。不仅标记辅助程序而且通过使用逆向遗传策略(敲除或敲除)或过表达的转基因方法已广泛用于工程化水稻作物。CRISPR / Cas是一种有吸引力的范例,它为同时操纵多个基因提供了可行性。在本文中,我们重点介绍了一些分子实体,这些分子实体可以通过使用CRISPR / Cas潜在地靶向产生可在高盐度条件下维持生长的水稻。除了已知的问题,我们还尝试解决水稻耐盐胁迫的关键问题。
更新日期:2019-05-21
down
wechat
bug