当前位置: X-MOL 学术Curr. Opin. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hierarchical structure of bacterial-derived cellulose and its impact on biomedical applications
Current Opinion in Chemical Engineering ( IF 6.6 ) Pub Date : 2019-05-17 , DOI: 10.1016/j.coche.2019.04.005
Elizabeth M van Zyl , Jeannine M Coburn

Since its discovery in 1886, bacterial-derived cellulose has become a highly researched biomaterial due to its unique structural properties. These properties include fibrous structure and robust stability through immense hydrogen bonding. The hydrogen bonding and resulting hierarchical structure from polymer chains to fibers can be controlled by altering bacteria culture conditions. Low temperature and static culture of cellulose producing microbes lead to the formation of a less stable cellulose amorph, while agitated culture, increased culture duration, alternative carbon sources, and the addition of additives lead to the formation of cellulose with an increased thermal stability. The unique structure of bacterial-derived cellulose allows it to be used for living cell-based sensors, vehicles for targeted cell delivery, and material for wound dressings. This review discusses the recent findings on bacterial-derived cellulose and cellulose synthase as a frame for advanced functional biomaterials.



中文翻译:

细菌衍生纤维素的层次结构及其对生物医学应用的影响

自1886年被发现以来,由于其独特的结构特性,细菌衍生的纤维素已成为受到高度研究的生物材料。这些特性包括纤维结构和通过巨大氢键形成的稳固稳定性。氢键和由此形成的从聚合物链到纤维的分层结构可以通过改变细菌培养条件来控制。产生纤维素的微生物的低温和静态培养导致形成较不稳定的纤维素无定形,而搅动培养,增加培养持续时间,替代碳源以及添加添加剂导致形成具有增加的热稳定性的纤维素。细菌衍生纤维素的独特结构使其可用于基于活细胞的传感器,靶向细胞递送的载体,和伤口敷料的材料。这篇评论讨论了细菌来源的纤维素和纤维素合酶作为先进功能生物材料框架的最新发现。

更新日期:2019-05-17
down
wechat
bug