当前位置: X-MOL 学术Annu. Rev. Biophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Programming Structured DNA Assemblies to Probe Biophysical Processes
Annual Review of Biophysics ( IF 12.4 ) Pub Date : 2019-05-14 , DOI: 10.1146/annurev-biophys-052118-115259
Eike-Christian Wamhoff 1 , James L. Banal 1 , William P. Bricker 1 , Tyson R. Shepherd 1 , Molly F. Parsons 1 , Rémi Veneziano 1 , Matthew B. Stone 1 , Hyungmin Jun 1 , Xiao Wang 1 , Mark Bathe 1
Affiliation  

Structural DNA nanotechnology is beginning to emerge as a widely accessible research tool to mechanistically study diverse biophysical processes. Enabled by scaffolded DNA origami in which a long single strand of DNA is weaved throughout an entire target nucleic acid assembly to ensure its proper folding, assemblies of nearly any geometric shape can now be programmed in a fully automatic manner to interface with biology on the 1–100-nm scale. Here, we review the major design and synthesis principles that have enabled the fabrication of a specific subclass of scaffolded DNA origami objects called wireframe assemblies. These objects offer unprecedented control over the nanoscale organization of biomolecules, including biomolecular copy numbers, presentation on convex or concave geometries, and internal versus external functionalization, in addition to stability in physiological buffer. To highlight the power and versatility of this synthetic structural biology approach to probing molecular and cellular biophysics, we feature its application to three leading areas of investigation: light harvesting and nanoscale energy transport, RNA structural biology, and immune receptor signaling, with an outlook toward unique mechanistic insight that may be gained in these areas in the coming decade.

中文翻译:


对结构化的DNA程序集进行编程以探测生物物理过程

结构DNA纳米技术已开始作为一种可广泛使用的研究工具,以机械方式研究各种生物物理过程。通过脚手架DNA折纸的实现,其中将一条长单链DNA编织到整个目标核酸组件中以确保其正确折叠,现在可以以全自动方式对几乎任何几何形状的组件进行编程,以与生物学上的1 –100纳米规模。在这里,我们回顾了主要的设计和合成原理,这些原理使得能够制造被称为线框装配体的支架DNA折纸对象的特定子类。这些对象为生物分子的纳米级组织提供了空前的控制,包括生物分子拷贝数,凸或凹几何形状的呈现以及内部与外部功能化,除了在生理缓冲液中稳定。为了突出这种合成结构生物学方法探测分子和细胞生物物理学的功能和多功能性,我们将其应用于三个主要研究领域:光收集和纳米级能量传输,RNA结构生物学和免疫受体信号传导,并展望未来十年将在这些领域中获得独特的机械洞察力。

更新日期:2020-04-21
down
wechat
bug