当前位置: X-MOL 学术Annu. Rev. Biophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Programming Structured DNA Assemblies to Probe Biophysical Processes
Annual Review of Biophysics ( IF 10.4 ) Pub Date : 2019-05-14 , DOI: 10.1146/annurev-biophys-052118-115259
Eike-Christian Wamhoff 1 , James L Banal 1 , William P Bricker 1 , Tyson R Shepherd 1 , Molly F Parsons 1 , Rémi Veneziano 1 , Matthew B Stone 1 , Hyungmin Jun 1 , Xiao Wang 1 , Mark Bathe 1
Affiliation  

Structural DNA nanotechnology is beginning to emerge as a widely accessible research tool to mechanistically study diverse biophysical processes. Enabled by scaffolded DNA origami in which a long single strand of DNA is weaved throughout an entire target nucleic acid assembly to ensure its proper folding, assemblies of nearly any geometric shape can now be programmed in a fully automatic manner to interface with biology on the 1–100-nm scale. Here, we review the major design and synthesis principles that have enabled the fabrication of a specific subclass of scaffolded DNA origami objects called wireframe assemblies. These objects offer unprecedented control over the nanoscale organization of biomolecules, including biomolecular copy numbers, presentation on convex or concave geometries, and internal versus external functionalization, in addition to stability in physiological buffer. To highlight the power and versatility of this synthetic structural biology approach to probing molecular and cellular biophysics, we feature its application to three leading areas of investigation: light harvesting and nanoscale energy transport, RNA structural biology, and immune receptor signaling, with an outlook toward unique mechanistic insight that may be gained in these areas in the coming decade.

中文翻译:



对结构化 DNA 组件进行编程以探测生物物理过程



结构 DNA 纳米技术开始作为一种广泛使用的研究工具出现,用于机械地研究不同的生物物理过程。通过支架式 DNA 折纸技术,其中一条长的单链 DNA 编织在整个目标核酸组装体中,以确保其正确折叠,几乎任何几何形状的组装体现在都可以以全自动方式进行编程,以与生物学接口 1 –100 纳米尺度。在这里,我们回顾了主要的设计和合成原理,这些原理使得支架式 DNA 折纸对象的特定子类(称为线框组件)的制造成为可能。这些物体提供了对生物分子纳米级组织的前所未有的控制,包括生物分子拷贝数、凸或凹几何形状的呈现、内部与外部功能化,以及生理缓冲液的稳定性。为了强调这种合成结构生物学方法在探测分子和细胞生物物理学方面的力量和多功能性,我们将其应用于三个主要研究领域:光捕获和纳米级能量传输、RNA结构生物学和免疫受体信号传导,并展望未来十年可能在这些领域获得独特的机制见解。

更新日期:2020-04-21
down
wechat
bug