当前位置: X-MOL 学术Rev. Geophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synthesis of Oceanic Crustal Structure From Two‐Dimensional Seismic Profiles
Reviews of Geophysics ( IF 25.2 ) Pub Date : 2019-06-14 , DOI: 10.1029/2019rg000641
G. L. Christeson 1 , J. A. Goff 1 , R. S. Reece 2
Affiliation  

We present a new synthesis of oceanic crustal structure from two‐dimensional seismic profiles to explore differences related to spreading rate and age. Primary results are as follows: (1) Layer 2 has an average thickness of 1.84 km but is thicker for young slow‐spreading crust and thinner for young superfast‐spreading crust. At faster‐spreading rates the layer 2/3 boundary likely corresponds to the lithologic boundary between dikes and gabbros. At slow‐spreading centers, the layer 2/3 boundary is interpreted to mark a change in porosity with depth within the dikes. (2) Total crustal thickness averages 6.15 km and is similar across all spreading rates. (3) Velocities at the top of layer 2 increase rapidly from 3.0 km/s at 0 Ma to 4.6 km/s at 10.5 Ma, with a slower increase to 5.0 km/s at 170 Ma. The rapid increase in velocity at young ages is attributed to crack closure by precipitation of hydrothermal alteration products; the increase at older ages suggests that this process persists as the oceanic crust evolves. (4) There is a correlation between velocities at the top of layer 2 and sediment thickness, with velocities of 5.8–5.9 km/s associated with a sediment thickness of 4.0–4.3 km. The thick sediment may collapse large‐scale features such as lava tubes and fractures. (5) Average velocities at the top of layer 3 are lower for young slow‐spreading and intermediate‐spreading oceanic crust (6.1–6.2 km/s) than for older or faster‐spreading oceanic crust (6.5–6.7 km/s). These low velocities are likely associated with faults penetrating into the sheeted dikes.

中文翻译:

利用二维地震剖面合成海洋地壳结构

我们提出了一种由二维地震剖面合成的大洋地壳结构的新方法,以探索与传播速率和年龄有关的差异。初步结果如下:(1)第2层的平均厚度为1.84 km,但对于年轻的慢速扩散地壳则较厚,而对于超级快扩散的地壳则较薄。以更快的传播速度,第2/3层边界可能对应于堤坝和辉长岩之间的岩性边界。在扩展缓慢的中心,第2/3层边界被解释为标记堤坝内孔隙度随深度的变化。(2)地壳总厚度平均为6.15 km,并且在所有扩展速率上都相似。(3)第2层顶部的速度从0 Ma时的3.0 km / s迅速增加到10.5 Ma时的4.6 km / s,而缓慢增加到170 Ma时的5.0 km / s。青年时期速度的迅速增加归因于热液蚀变产物的沉淀而使裂缝封闭。随着年龄的增长,这一过程随着洋壳的演化而持续。(4)第2层顶部的速度与沉积物厚度之间存在相关性,速度5.8-5.9 km / s与沉积物厚度4.0-4.3 km相关。厚厚的沉积物可能会使熔岩管和裂缝等大型特征坍塌。(5)慢速传播和中间扩展的年轻洋壳(6.1-6.2 km / s)在第3层顶部的平均速度要低于旧的或快速传播的洋壳(6.5-6.7 km / s)。这些低速度可能与渗透到薄片堤坝中的断层有关。随着年龄的增长,这一过程随着洋壳的演化而持续。(4)第2层顶部的速度与沉积物厚度之间存在相关性,速度5.8-5.9 km / s与沉积物厚度4.0-4.3 km有关。厚厚的沉积物可能会使熔岩管和裂缝等大型特征坍塌。(5)慢速传播和中间扩展的年轻洋壳(6.1-6.2 km / s)在第3层顶部的平均速度要低于旧的或快速传播的洋壳(6.5-6.7 km / s)。这些低速度可能与渗透到薄片堤坝中的断层有关。随着年龄的增长,这一过程随着洋壳的演化而持续。(4)第2层顶部的速度与沉积物厚度之间存在相关性,速度5.8-5.9 km / s与沉积物厚度4.0-4.3 km有关。厚厚的沉积物可能会使熔岩管和裂缝等大型特征坍塌。(5)慢速传播和中间扩展的年轻洋壳(6.1-6.2 km / s)在第3层顶部的平均速度要低于旧的或快速传播的洋壳(6.5-6.7 km / s)。这些低速度可能与渗透到薄片堤坝中的断层有关。9 km / s的沉积物厚度为4.0-4.3 km。厚厚的沉积物可能会使熔岩管和裂缝等大型特征坍塌。(5)慢速传播和中间扩展的年轻洋壳(6.1-6.2 km / s)在第3层顶部的平均速度要低于旧的或快速传播的洋壳(6.5-6.7 km / s)。这些低速度可能与渗透到薄片堤坝中的断层有关。9 km / s的沉积物厚度为4.0-4.3 km。厚厚的沉积物可能会使熔岩管和裂缝等大型特征坍塌。(5)慢速传播和中间扩展的年轻洋壳(6.1-6.2 km / s)在第3层顶部的平均速度要低于旧的或快速传播的洋壳(6.5-6.7 km / s)。这些低速度可能与渗透到薄片堤坝中的断层有关。
更新日期:2019-06-14
down
wechat
bug