当前位置: X-MOL 学术Mater. Today › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tuning perovskite oxides by strain: Electronic structure, properties, and functions in (electro)catalysis and ferroelectricity
Materials Today ( IF 24.2 ) Pub Date : 2019-12-01 , DOI: 10.1016/j.mattod.2019.03.014
Jonathan Hwang , Zhenxing Feng , Nenian Charles , Xiao Renshaw Wang , Dongkyu Lee , Kelsey A. Stoerzinger , Sokseiha Muy , Reshma R. Rao , Dongwook Lee , Ryan Jacobs , Dane Morgan , Yang Shao-Horn

Abstract Complex oxides, such as ABO3 perovskites, are an important class of functional materials that exhibit a wide range of physical, chemical, and electrochemical properties, including high oxygen electrocatalytic activity, tunable electronic/ionic conductivity, and ferroelectricity. When complex oxides are engineered as thin films, their chemical and physical properties can be modified to be markedly different from their bulk form, providing additional degrees of freedom in materials design. In this review, we survey the landscape of strain-induced design of complex oxides in the context of oxygen electrocatalysis and ferroelectricity. First, we identify the role of strain in influencing oxide electronic properties, driven by the combination of modification of B O bond length and octahedral distortion in perovskites. We describe electronic structure parameters, such as the O 2p-band center, that quantitatively capture these electronic changes, highlighting the broad influence of the O 2p-band center on surface reactivity (oxygen adsorption and dissociation energy) and bulk defect energetics (oxygen vacancy formation and migration energy). Motivated by the promise of the influence of strain on material properties relevant for oxygen electrocatalysis and ferroelectricity, we describe the advances in state-of-the-art thin-film fabrication and characterization that have enabled a high degree of experimental control in realizing strain effects in oxide thin-film systems. In oxygen electrocatalysis, leveraging strain has not only resulted in activity enhancements relative to bulk unstrained material systems but also revealed mechanistic influences of oxide phenomena, such as bulk defect chemistry and transfer kinetics, on electrochemical processes. Similarly for ferroelectric properties, strain engineering can both enhance polarization in known ferroelectrics and induce ferroelectricity in material systems that would be otherwise non-ferroelectric in bulk. Based on understanding of a diverse range of perovskite functionalities, we offer perspectives on how further coupling of strain, oxygen electrocatalysis, and ferroelectricity opens up pathways toward the emergence of novel device design features with dynamic control of increasing complex chemical and high-performance electronic processes.

中文翻译:

通过应变调整钙钛矿氧化物:(电)催化和铁电中的电子结构、性质和功能

摘要 复合氧化物,如 ABO3 钙钛矿,是一类重要的功能材料,具有广泛的物理、化学和电化学性质,包括高氧电催化活性、可调电子/离子电导率和铁电性。当复合氧化物被设计为薄膜时,它们的化学和物理特性可以被修改为与它们的块状形式明显不同,为材料设计提供额外的自由度。在这篇综述中,我们调查了在氧电催化和铁电性背景下复杂氧化物应变诱导设计的前景。首先,我们确定了应变在影响氧化物电子特性中的作用,这是由钙钛矿中 BO 键长的修改和八面体畸变的组合驱动的。我们描述了电子结构参数,例如定量捕获这些电子变化的 O 2p 带中心,突出了 O 2p 带中心对表面反应性(氧吸附和解离能)和体缺陷能量学(氧空位)的广泛影响形成和迁移能)。受应变对与氧电催化和铁电相关的材料性能影响的承诺的推动,我们描述了最先进的薄膜制造和表征方面的进展,这些进展使实现应变效应的高度实验控制成为可能在氧化物薄膜系统中。在氧电催化中,利用应变不仅导致相对于整体未应变材料系统的活性增强,而且还揭示了氧化物现象对电化学过程的机械影响,例如整体缺陷化学和转移动力学。类似地,对于铁电特性,应变工程既可以增强已知铁电体的极化,又可以在材料系统中诱导铁电体,否则这些材料系统通常是非铁电体。基于对各种钙钛矿功能的理解,我们提供了关于应变、氧电催化和铁电的进一步耦合如何为新器件设计特征的出现开辟途径的观点,以及对日益复杂的化学和高性能电子过程的动态控制. 例如关于电化学过程的体缺陷化学和转移动力学。类似地,对于铁电特性,应变工程既可以增强已知铁电体的极化,又可以在材料系统中诱导铁电体,否则这些材料系统通常是非铁电体。基于对各种钙钛矿功能的理解,我们提供了关于应变、氧电催化和铁电的进一步耦合如何为新器件设计特征的出现开辟途径的观点,以及对日益复杂的化学和高性能电子过程的动态控制. 例如关于电化学过程的体缺陷化学和转移动力学。类似地,对于铁电特性,应变工程既可以增强已知铁电体的极化,又可以在材料系统中诱导铁电体,否则这些材料系统通常是非铁电体。基于对各种钙钛矿功能的理解,我们提供了关于应变、氧电催化和铁电的进一步耦合如何为新器件设计特征的出现开辟途径的观点,以及对日益复杂的化学和高性能电子过程的动态控制. 应变工程既可以增强已知铁电体的极化,又可以在材料系统中诱导铁电体,否则这些材料系统原本是非铁电体。基于对各种钙钛矿功能的理解,我们提供了关于应变、氧电催化和铁电的进一步耦合如何为新器件设计特征的出现开辟途径的观点,以及对日益复杂的化学和高性能电子过程的动态控制. 应变工程既可以增强已知铁电体的极化,又可以在材料系统中诱导铁电体,否则这些材料系统原本是非铁电体。基于对各种钙钛矿功能的理解,我们提供了关于应变、氧电催化和铁电的进一步耦合如何为新器件设计特征的出现开辟途径的观点,以及对日益复杂的化学和高性能电子过程的动态控制.
更新日期:2019-12-01
down
wechat
bug