当前位置: X-MOL 学术npj Clean Water › 论文详情
Algal–bacterial synergy in treatment of winery wastewater
npj Clean Water ( IF 4.870 ) Pub Date : 2018-05-24 , DOI: 10.1038/s41545-018-0005-y
Brendan T. Higgins, Ingrid Gennity, Patrick S. Fitzgerald, Shannon J. Ceballos, Oliver Fiehn, Jean S. VanderGheynst

There is significant potential for employing algae in tertiary wastewater treatment, however, little is known about the contribution of algae-bacteria synergy toward treatment performance. This study demonstrates potential synergy in the treatment of three winery wastewater samples. Two strains of green algae, Auxenochlorella protothecoides and Chlorella sorokiniana were tested and each removed > 90% of nitrogen, > 50% of phosphate, and 100% of acetic acid in the wastewater. Both algae strains grew significantly faster on wastewaters compared to growth on minimal media. Organic carbon in the wastewater apparently played a limited role in algal growth enhancement. When cultured on sterile-filtered wastewater, A. protothecoides increased soluble COD loadings in two of the three wastewaters and C. sorokiniana secreted an insoluble film. Culturing algae with the native wastewater microbial community negated the secretion of algal photosynthate, allowing for simultaneous reductions in COD and nutrient concentrations. Both algae species stimulated bacterial growth in a strain-specific way, suggesting unique responses to algal photosynthate. Cofactor auxotrophy for thiamine, cobalamin, and biotin is widespread among algae and these cofactors are typically obtained from bacteria. Sequencing the wastewater microbial community revealed bacteria capable of synthesizing all three cofactors while liquid chromatography with mass spectrometry (LCMS) and bio-assays revealed the presence of thiamine metabolites in the wastewaters. These cofactors likely increased algal growth rates, particularly for A. protothecoides, which cannot synthesize thiamine de-novo but can salvage it from degradation products. Collectively, these results demonstrate that bacteria and algae provided synergistic growth benefits, potentially contributing to higher levels of wastewater treatment than either organism type alone.

更新日期:2019-11-18

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
彭小水
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
赵延川
李霄羽
廖矿标
朱守非
试剂库存
down
wechat
bug