当前位置: X-MOL 学术Phys. Rep. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The degree of fine-tuning in our universe — and others
Physics Reports ( IF 23.9 ) Pub Date : 2019-05-01 , DOI: 10.1016/j.physrep.2019.02.001
Fred C. Adams

(abridged) Both fundamental constants that describe the laws of physics and cosmological parameters that determine the cosmic properties must fall within a range of values in order for the universe to develop astrophysical structures and ultimately support life. This paper reviews current constraints on these quantities. The standard model of particle physics contains both coupling constants and particle masses, and the allowed ranges of these parameters are discussed first. We then consider cosmological parameters, including the total energy density, the vacuum energy density, the baryon-to-photon ratio, the dark matter contribution, and the amplitude of primordial density fluctuations. These quantities are constrained by the requirements that the universe lives for a long time, emerges from the BBN epoch with an acceptable chemical composition, and can successfully produce galaxies. On smaller scales, stars and planets must be able to form and function. The stars must have sufficiently long lifetimes and hot surface temperatures. The planets must be massive enough to maintain an atmosphere, small enough to remain non-degenerate, and contain enough particles to support a complex biosphere. These requirements place constraints on the gravitational constant, the fine structure constant, and composite parameters that specify nuclear reaction rates. We consider specific instances of possible fine-tuning in stars, including the triple alpha reaction that produces carbon, as well as the effects of unstable deuterium and stable diprotons. For all of these issues, viable universes exist over a range of parameter space, which is delineated herein. Finally, for universes with significantly different parameters, new types of astrophysical processes can generate energy and support habitability.

中文翻译:

我们宇宙中的微调程度——以及其他

(删节)描述物理定律的基本常数和决定宇宙特性的宇宙学参数都必须在一个值范围内,以便宇宙发展天体物理结构并最终支持生命。本文回顾了当前对这些数量的限制。粒子物理学的标准模型包含耦合常数和粒子质量,首先讨论这些参数的允许范围。然后我们考虑宇宙学参数,包括总能量密度、真空能量密度、重子光子比、暗物质贡献和原始密度波动幅度。这些数量受到宇宙长期存在的要求的约束,以可接受的化学成分从 BBN 时代出现,并且可以成功地产生星系。在较小的尺度上,恒星和行星必须能够形成和运作。恒星必须有足够长的寿命和炽热的表面温度。行星必须足够大以维持大气层,足够小以保持非退化,并包含足够多的粒子以支持复杂的生物圈。这些要求对引力常数、精细结构常数和指定核反应速率的复合参数施加了限制。我们考虑了恒星可能微调的具体实例,包括产生碳的三重α反应,以及不稳定的氘和稳定的双质子的影响。对于所有这些问题,可行的宇宙存在于本文描述的一系列参数空间中。最后,
更新日期:2019-05-01
down
wechat
bug