当前位置: X-MOL 学术IEEE Trans. Ind. Electron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Pedagogical Study of Aerodynamic Feedback Control by Dielectric Barrier Discharge Plasma
IEEE Transactions on Industrial Electronics ( IF 7.5 ) Pub Date : 2-11-2019 , DOI: 10.1109/tie.2019.2897514
Pok Wang Kwan , Xun Huang

Active flow control by means of plasma actuators has potential advantages over conventional strategies, e.g., mechanical or hydraulic components may be replaced by lightweight, compact, fast response plasma actuators. In this paper, several designs of dielectric barrier discharge (DBD) plasma actuators are presented for aerospace applications and the focus is on the associated feedback control implementation. The interdisciplinary nature of aerodynamic feedback control with plasma, however, makes direct experimental demonstrating an outstanding challenge. Here, we propose a realistic experimental control implementation afforded by commercial off-the-shelf electric products and the major achievement is the detailed instruction (in both electricity and aerodynamics) and the successful demonstration of the closed-loop design in controlling the dominant modes from a cylinder flow setup. The essence of our approach is to drive DBD plasma actuations by a downstream sensor and excite aerodynamic velocity perturbations, which are further amplified on the shear flow from the cylinder, leading to airflow structures, such as vortex roll-up and randomization, which are measured by the downstream sensor to complete the whole loop. We benchmark our control approach by comparing to the predicted dominant frequencies of the controlled flow system, which can be achieved by the Barkhausen stability criterion after establishing the corresponding transfer function of the whole flow control system. Overall, this paper shall assist a host of new applications in aerospace applications in the near future.

中文翻译:


介质阻挡放电等离子体气动反馈控制的教学研究



与传统策略相比,通过等离子体致动器进行主动流量控制具有潜在优势,例如,机械或液压部件可以被轻质、紧凑、快速响应的等离子体致动器取代。在本文中,提出了几种用于航空航天应用的介质阻挡放电(DBD)等离子体执行器的设计,重点是相关的反馈控制实现。然而,等离子体空气动力学反馈控制的跨学科性质使得直接实验证明成为一个巨大的挑战。在这里,我们提出了一种由商业现成电气产品提供的现实实验控制实现,主要成就是详细的说明(电力和空气动力学方面)以及闭环设计在控制主要模式方面的成功演示。气缸流量设置。我们方法的本质是通过下游传感器驱动 DBD 等离子体驱动并激发空气动力学速度扰动,这些扰动在来自气缸的剪切流上进一步放大,从而产生气流结构,例如涡旋卷起和随机化,这些结构可被测量由下游传感器来完成整个循环。我们通过与受控流系统的预测主频率进行比较来对我们的控制方法进行基准测试,这可以在建立整个流量控制系统的相应传递函数后通过巴克豪森稳定性准则来实现。总的来说,本文将在不久的将来为航空航天应用中的许多新应用提供帮助。
更新日期:2024-08-22
down
wechat
bug