当前位置: X-MOL 学术Chem. Soc. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stimuli-sensitive polymer prodrug nanocarriers by reversible-deactivation radical polymerization
Chemical Society Reviews ( IF 46.2 ) Pub Date : 2024-05-22 , DOI: 10.1039/d2cs01060g
Léa Guerassimoff 1 , Marianne Ferrere 1 , Amaury Bossion 1 , Julien Nicolas 1
Affiliation  

Polymer prodrugs are based on the covalent linkage of therapeutic molecules to a polymer structure which avoids the problems and limitations commonly encountered with traditional drug-loaded nanocarriers in which drugs are just physically entrapped (e.g., burst release, poor drug loadings). In the past few years, reversible-deactivation radical polymerization (RDRP) techniques have been extensively used to design tailor-made polymer prodrug nanocarriers. This synthesis strategy has received a lot of attention due to the possibility of fine tuning their structural parameters (e.g., polymer nature and macromolecular characteristics, linker nature, physico-chemical properties, functionalization, etc.), to achieve optimized drug delivery and therapeutic efficacy. In particular, adjusting the nature of the drug–polymer linker has enabled the easy synthesis of stimuli-responsive polymer prodrugs for efficient spatiotemporal drug release. In this context, this review article will give an overview of the different stimuli-sensitive polymer prodrug structures designed by RDRP techniques, with a strong focus on the synthesis strategies, the macromolecular architectures and in particular the drug–polymer linker, which governs the drug release kinetics and eventually the therapeutic effect. Their biological evaluations will also be discussed.

中文翻译:


通过可逆失活自由基聚合制备刺激敏感聚合物前药纳米载体



聚合物前药基于治疗分子与聚合物结构的共价连接,避免了传统载药纳米载体通常遇到的问题和限制,其中药物仅被物理捕获(例如突发释放、载药量差)。在过去的几年中,可逆失活自由基聚合(RDRP)技术已被广泛用于设计定制的聚合物前药纳米载体。这种合成策略由于可以微调其结构参数(例如聚合物性质和大分子特征、连接基性质、物理化学性质、功能化等)以实现优化的药物输送和治疗效果而受到广泛关注。 。特别是,调整药物-聚合物连接体的性质使得能够轻松合成刺激响应性聚合物前药,从而实现有效的时空药物释放。在此背景下,本文将概述通过 RDRP 技术设计的不同刺激敏感聚合物前药结构,重点关注合成策略、大分子结构,特别是控制药物的药物-聚合物连接体释放动力学和最终的治疗效果。他们的生物学评价也将被讨论。
更新日期:2024-05-22
down
wechat
bug