当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A high internal heat flux and large core in a warm neptune exoplanet
Nature ( IF 64.8 ) Pub Date : 2024-05-20 , DOI: 10.1038/s41586-024-07514-w
Luis Welbanks , Taylor J. Bell , Thomas G. Beatty , Michael R. Line , Kazumasa Ohno , Jonathan J. Fortney , Everett Schlawin , Thomas P. Greene , Emily Rauscher , Peter McGill , Matthew Murphy , Vivien Parmentier , Yao Tang , Isaac Edelman , Sagnick Mukherjee , Lindsey S. Wiser , Pierre-Olivier Lagage , Achrène Dyrek , Kenneth E. Arnold

Interactions between exoplanetary atmospheres and internal properties have long been hypothesized to be drivers of the inflation mechanisms of gaseous planets and apparent atmospheric chemical disequilibrium conditions1. However, transmission spectra of exoplanets has been limited in its ability to observational confirm these theories due to the limited wavelength coverage of HST and inferences of single molecules, mostly H2O (ref. 2). In this work, we present the panchromatic transmission spectrum of the approximately 750 K, low-density, Neptune-sized exoplanet WASP-107b using a combination of HST WFC3, JWST NIRCam and MIRI. From this spectrum, we detect spectroscopic features due to H2O (21σ), CH4 (5σ), CO (7σ), CO2 (29σ), SO2 (9σ), and NH3 (6σ). The presence of these molecules enable constraints on the atmospheric metal enrichment (M/H is 10–18× Solar3), vertical mixing strength (log10Kzz = 8.4–9.0 cm2s−1), and internal temperature (>345 K). The high internal temperature is suggestive of tidally-driven inflation4 acting upon a Neptunelike internal structure, which can naturally explain the planet’s large radius and low density. These findings suggest that eccentricity driven tidal heating is a critical process governing atmospheric chemistry and interior structure inferences for a majority of the cool (<1,000K) super-Earth-to-Saturn mass exoplanet population.



中文翻译:


温暖的海王星系外行星的高内部热通量和大核心



长期以来,外行星大气和内部特性之间的相互作用一直被认为是气态行星膨胀机制和明显大气化学不平衡条件的驱动因素 1 。然而,由于 HST 的波长覆盖范围和单分子(主要是 H 2 O)的推断有限,系外行星的透射光谱在观测证实这些理论的能力方面受到限制(参考文献 2 O (21σ)、CH 4 (5σ)、CO (7σ)、CO 2 (29σ) 的光谱特征)、SO 2 (9σ) 和 NH 3 (6σ)。这些分子的存在可以限制大气金属富集(M/H 为 10–18× 太阳 3 )、垂直混合强度(log 10 K zz = 8.4–9.0 cm 2 s −1 ),以及内部温度 (>345 K)。高内部温度表明潮汐驱动的膨胀 4 作用于类似海王星的内部结构,这可以自然地解释这颗行星的大半径和低密度。这些发现表明,偏心率驱动的潮汐加热是控制大多数冷(<1,000K)超级地对土星质量系外行星群体的大气化学和内部结构推论的关键过程。

更新日期:2024-05-21
down
wechat
bug