当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
MoS2@MWCNTs with Rich Vacancy Defects for Effective Piezocatalytic Degradation of Norfloxacin via Innergenerated-H2O2: Enhanced Nonradical Pathway and Synergistic Mechanism with Radical Pathway
ACS Applied Materials & Interfaces ( IF 9.5 ) Pub Date : 2024-05-10 , DOI: 10.1021/acsami.4c04152
Xueyao Wang 1 , Xuyang Hu 1 , Zhengjun Qu 1 , Ting Sun 1, 2 , Lihui Huang 1 , Shimin Xu 3
Affiliation  

Molybdenum disulfide (MoS2)-based materials for piezocatalysis are unsatisfactory due to their low actual piezoelectric coefficient and poor electrical conductivity. Herein, 1T/3R phase MoS2 grown in situ on multiwalled carbon nanotubes (MWCNTs) was proposed. MoS2@MWCNTs exhibited the interwoven morphology of thin nanoflowers and tubes, and the piezoelectric response of MoS2@MWCNTs was 4.07 times higher than that of MoS2 via piezoresponse force microscopy (PFM) characterization. MoS2@MWCNTs exhibited superior activity with a 91% degradation rate of norfloxacin (NOR) after actually working 24 min (as for rhodamine B, reached 100% within 18 min) by pulse-mode ultrasonic vibration-triggered piezocatalysis. It was found that piezocatalysis for removing pollutants was attributed to the synergistic effect of free radicals (OH and O2•–) and nonfree radical (1O2, key role) pathways, together with the innergenerated-H2O2 promoting the degradation rate. 1O2 can be generated by electron transfer and energy transfer pathways. The presence of oxygen vacancies (OVs) induced the transformation of O2 to 1O2 by triplet energy transfer. The fast charge transfer in MoS2@MWCNTs heterostructure and the coexistence of sulfur vacancies and OVs enhanced charge carrier separation resulting in a prominent piezoelectric effect. This work opens up new avenues for the development of efficient piezocatalysts that can be utilized for environmental purification.

中文翻译:


具有丰富空位缺陷的MoS2@MWCNTs通过内生H2O2有效压电催化降解诺氟沙星:增强的非自由基途径和与自由基途径的协同机制



用于压电催化的二硫化钼(MoS 2 )基材料由于其实际压电系数低和导电性差而不能令人满意。在此,提出了在多壁碳纳米管(MWCNT)上原位生长的1T/3R相MoS 2 。 MoS 2 @MWCNTs 表现出薄纳米花和管状交织的形貌,且 MoS 2 @MWCNTs 的压电响应比 MoS 2 高 4.07 倍通过压电响应力显微镜 (PFM) 表征。 MoS 2 @MWCNTs 在脉冲模式超声振动触发下表现出优异的活性,实际工作 24 分钟后诺氟沙星 (NOR) 降解率为 91%(罗丹明 B 在 18 分钟内达到 100%)压电催化。研究发现,压电催化去除污染物的作用是自由基( ·OH和O 2 •– )和非自由基( 1 O 2 ,关键作用)途径,与内部生成的-H 2 O 2 一起促进降解速率。 1 O 2 可以通过电子转移和能量转移途径产生。氧空位 (OV) 的存在导致 O 2 通过三线态能量转移转变为 1 O 2 。 MoS 2 @MWCNTs 异质结构中的快速电荷转移以及硫空位和 OV 的共存增强了载流子分离,从而产生了显着的压电效应。这项工作为开发可用于环境净化的高效压电催化剂开辟了新途径。
更新日期:2024-05-10
down
wechat
bug