当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Unraveling interfacial compatibility of ultrahigh nickel cathode and chloride solid electrolyte for stable all-solid-state lithium battery
Energy & Environmental Science ( IF 32.5 ) Pub Date : 2024-05-09 , DOI: 10.1039/d4ee01302f
Feng Li , Ye-Chao Wu , Xiao-Bin Cheng , Yihong Tan , Jin-Da Luo , Ruijun Pan , Tao Ma , Lei-Lei Lu , Xiaolei Wen , Zheng Liang , Hong-Bin Yao

All-solid-state lithium batteries (ASSLBs) combining the cost-controllable ultrahigh nickel cathode are receiving considerable attention due to their great potential for good safety under high energy density. Improving the interfacial stability between the cathode and solid electrolyte is crucial for achieving high battery performance. Herein, we first employed in-situ electrochemical impedance spectroscopy, galvanostatic cycling, and ex-situ Time-of-flight secondary ion mass spectrometry techniques to probe the degradation mechanism of ultrahigh nickel cathode, LiNi0.92Co0.05Mn0.03O2, and amorphous Li2TaCl7 electrolyte at different cut-off voltages of 4.3, 4.6, and 4.8 V. At high charge potentials, LiNi0.92Co0.05Mn0.03O2 cathodes release lattice oxygen, causing the inevitable breakdown of amorphous chlorides and the Li-ion percolating network within the composite cathodes, resulting in a decrease in the capacity and lifespan of the fabricated ASSLBs. In light of these findings, we propose a capacity-cyclability trade-off strategy by reducing the charging voltage, resulting in a durable interface that prevents the generation of lattice oxygen. Specifically, the capacity retention of ASSLBs, which performed under a high areal capacity of 5 mAh cm-2, remained above 80% for 300 cycles and 600 cycles at 1 mA cm-2 and 3 mA cm-2, respectively. Additionally, the lifespan increased sixfold compared to the 4.3 V charging condition. Our work clarifies the degradation mechanisms of ultrahigh nickel cathode and amorphous chloride electrolytes and presents a practical strategy for achieving battery cycling durability.

中文翻译:

揭示稳定全固态锂电池超高镍正极与氯化物固体电解质的界面相容性

结合成本可控的超高镍正极的全固态锂电池(ASSLB)由于其在高能量密度下具有良好安全性的巨大潜力而​​受到广泛关注。提高正极和固体电解质之间的界面稳定性对于实现高电池性能至关重要。在此,我们首先采用原位电化学阻抗谱、恒电流循环和非原位飞行时间二次离子质谱技术来探讨超高镍正极、LiNi 0.92 Co 0.05 Mn 0.03 O 2和非晶态的降解机制。 Li 2 TaCl 7电解质在4.3、4.6和4.8 V的不同截止电压下。在高充电电位下,LiNi 0.92 Co 0.05 Mn 0.03 O 2阴极释放晶格氧,导致无定形氯化物和锂离子不可避免的击穿复合阴极内的渗透网络,导致所制造的 ASSLB 的容量和寿命下降。根据这些发现,我们提出了一种容量-循环性权衡策略,通过降低充电电压,形成耐用的界面,防止晶格氧的产生。具体而言,在5 mAh cm -2的高面积容量下表现的ASSLBs的容量保持率分别在1 mA cm -2和3 mA cm -2下经过300次循环和600次循环后仍保持在80%以上。此外,与 4.3 V 充电条件相比,寿命延长了六倍。我们的工作阐明了超高镍阴极和无定形氯化物电解质的降解机制,并提出了实现电池循环耐久性的实用策略。
更新日期:2024-05-09
down
wechat
bug