当前位置: X-MOL 学术J. Alloys Compd. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Construction of TiO2@Cu2O-CuS heterostructures integrating RGO for enhanced full-spectrum photocatalytic degradation of organic pollutants
Journal of Alloys and Compounds ( IF 6.2 ) Pub Date : 2024-04-30 , DOI: 10.1016/j.jallcom.2024.174682
Luminita Andronic , Coset Abreu-Jaureguí , Joaquin Silvestre-Albero

This study presents the development and optimization of TiO@CuO-CuS heterostructures, enhanced with reduced graphene oxide (RGO), for efficient photocatalytic degradation of organic pollutants, focusing on imidacloprid. Two configurations, TiO/RGO/CuO-CuS and CuO-CuS/RGO/TiO, are explored to highlight the impact of material layering on photocatalytic efficiency. The strategic integration of RGO optimizes charge transfer, crucial for photocatalysis. Comprehensive characterization techniques, such as X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), Raman spectroscopy, and Nitrogen adsorption-desorption isotherms, provide insights into the crystalline structure, morphology, surface chemistry, and textural properties of the heterostructures. The TiO/RGO/CuO-CuS configuration significantly outperforms its counterpart in photocatalytic activity under full-spectrum (UV–VIS–IR) illumination, due to improved charge carrier dynamics and synergistic interactions between the composite materials. Remarkably, the TiO/RGO/CuO-CuS assembly achieved over 95 % degradation of imidacloprid under simulated solar irradiation, marking a breakthrough in solar spectrum utilization for photocatalysis and exhibits promising recyclability, maintaining its high photocatalytic efficiency even after multiple degradation cycles, highlighting its potential for sustainable pollutant removal applications. Additionally, this configuration demonstrates a twofold increase in degradation efficiency compared to separate UV and VIS irradiations, emphasizing its rapid pollutant removal capability. This research underscores the critical role of material layer sequencing in developing high-efficiency photocatalytic systems and marks a significant advancement in environmental remediation technologies that harness renewable energy sources.

中文翻译:


集成RGO的TiO2@Cu2O-CuS异质结构的构建用于增强有机污染物的全光谱光催化降解



本研究介绍了 TiO@CuO-CuS 异质结构的开发和优化,并用还原氧化石墨烯 (RGO) 增强,可有效光催化降解有机污染物,重点关注吡虫啉。探索了两种配置:TiO/RGO/CuO-CuS 和 CuO-CuS/RGO/TiO,以突出材料分层对光催化效率的影响。 RGO 的战略整合优化了电荷转移,这对于光催化至关重要。综合表征技术,如 X 射线衍射 (XRD)、透射电子显微镜 (TEM)、X 射线光电子能谱 (XPS)、拉曼光谱和氮吸附-解吸等温线,可深入了解晶体结构、形态、表面异质结构的化学和织构特性。由于改进的载流子动力学和复合材料之间的协同相互作用,TiO/RGO/CuO-CuS 配置在全光谱 (UV-VIS-IR) 照明下的光催化活性显着优于其对应物。值得注意的是,TiO/RGO/CuO-CuS组件在模拟太阳辐照下实现了吡虫啉的95%以上降解,标志着太阳光谱利用光催化的突破,并表现出良好的可回收性,即使在多次降解循环后仍保持其高光催化效率,突出了其可持续污染物去除应用的潜力。此外,与单独的紫外线和可见光照射相比,这种配置的降解效率提高了一倍,强调了其快速去除污染物的能力。 这项研究强调了材料层测序在开发高效光催化系统中的关键作用,并标志着利用可再生能源的环境修复技术的重大进步。
更新日期:2024-04-30
down
wechat
bug