当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
First observation of electrode-correlated protonic conductivity of perovskite-type electrolytes and way towards optimization
Energy & Environmental Science ( IF 32.5 ) Pub Date : 2024-05-08 , DOI: 10.1039/d4ee00688g
Zhixin Luo 1 , Jiayi Tang 1 , Zehua Wang 1 , Guangming Yang 2 , Tianjiu Zhu 1, 3 , Zezhou Lin 1, 4 , San Ping Jiang 1, 5 , Zongping Shao 1
Affiliation  

Ionic conductivity is usually considered an intrinsic property of an electrolyte, independent of environmental conditions. This study presents, for the first time, evidence that the protonic conductivity of defective perovskite electrolytes is influenced by the electrode performance, based on a comparative study of the conductivity of oxygen-ion-conducting samarium-doped ceria and proton-conducting BaZr0.1Ce0.7Y0.2O3−δ (BZCY) using electrochemical impedance spectroscopy (EIS) in a symmetric cell configuration. This contrasts with four different well-known air electrode materials, namely, BaCo0.7(Ce0.8Y0.2)0.3O3−δ, La0.8Sr0.2MnO3, BaCo0.4Fe0.4Zr0.1Y0.1O3−δ and PrBa0.5Sr0.5Co1.5Fe0.5O5+δ, which is further supported using a single cell test. Theoretical considerations and characterization are further taken to understand the different conductivity behaviors of the two electrolytes. The H2O-temperature-programmed-desorption mass spectroscopy experiment and time-of-flight secondary ion mass spectrometry experiments confirm that the conductivity of the BZCY electrolyte is related to the hydration capability of the electrode materials applied during the test. Drawing upon the finding, the way towards improving both the conductivity of the protonic electrolyte and electrode performance through electrode material tailoring is then proposed. This study provides valuable new perspectives for understanding the conductivity of protonic electrolyte science through concise yet solid material characterization methodologies, which eventually advance the development of protonic ceramic electrolysis/fuel cells for real-world clean energy applications.

中文翻译:


钙钛矿型电解质的电极相关质子电导率的首次观察及优化方法



离子电导率通常被认为是电解质的固有特性,与环境条件无关。这项研究基于氧离子传导钐掺杂二氧化铈和质子传导 BaZr 0.1 Ce 0.7 Y 0.2 O 3−δ (BZCY) 在对称电池配置中使用电化学阻抗谱 (EIS)。这与四种不同的众所周知的空气电极材料形成对比,即 BaCo 0.7 (Ce 0.8 Y 0.2 ) 0.3 O 3−δ 、La 0.8 Sr 0.2 MnO 3 、BaCo 0.4 Fe 0.4 Zr 0.1 Y 0.1 O 3−δ 和 PrBa 0.5 Sr 0.5 Co 1.5 Fe 0.5 O 5+δ ,使用单细胞测试进一步支持这一点。进一步采取理论考虑和表征来理解两种电解质的不同电导率行为。 H 2 O升温程序解吸质谱实验和飞行时间二次离子质谱实验证实,BZCY电解质的电导率与所用电极材料的水合能力有关。考试。根据这一发现,提出了通过电极材料定制来提高质子电解质的电导率和电极性能的方法。 这项研究通过简洁而可靠的材料表征方法为理解质子电解质科学的电导率提供了有价值的新视角,最终推动了质子陶瓷电解/燃料电池在现实世界清洁能源应用中的发展。
更新日期:2024-05-08
down
wechat
bug