当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bulk-to-surface co-modification of layered hydrated vanadate cathode for aqueous zinc ion batteries
Energy & Environmental Science ( IF 32.5 ) Pub Date : 2024-05-06 , DOI: 10.1039/d4ee00535j
Chen Zhang 1 , Yan Huang 2 , Xueer Xu 1 , Ziyu Chen 1 , Gang Xiao 2 , Yu Zhong 1 , Xiuli Wang 1 , Changdong Gu 1 , Jiangping Tu 1
Affiliation  

The major challenges of vanadium-based layered materials are their dissolution tendency and the instability of their bulk-phase structure, resulting in unsatisfactory cyclability, particularly at lower current densities. Herein, we propose a co-modification strategy of dual-ion doping and forming an in situ cathode-electrolyte interphase (CEI). The dual ions, consisting of an alkali-metal ion (Na+ or K+) and an alkaline-earth-metal ion (Ca2+ or Ba2+), stabilize the bulk phase. The latter forms a precipitate with SO42− in the electrolyte as an in situ CEI with a balance of stability and pH adaptiveness. Based on the stabilized cathode from bulk phase to surface, Ca0.56Na1.19V6O16·4.09H2O exhibits excellent cyclability, especially at lower current densities. The full cell retains 99.4% of capacity after 120 cycles at 0.2 A g−1 and 25 °C while using Zn(OTF)2 electrolyte. Moreover, it exhibits 84.5% capacity retention at 0.1 A g−1 and −30 °C after 1000 cycles. The Zn2+/H+ intercalation mechanism was investigated by analytical characterizations and density functional theory (DFT) calculations, which implied that proton (de)intercalation is restrained at −30 °C, leading to the median discharge voltage increasing from 0.705 to 0.795 V. The co-modified cathode exhibits a significant performance in Zn(ClO4)2 electrolyte at 0.1 A g−1 and −30 °C (90.8% capacity retention after 2000 cycles). The co-modification strategy provides a viable option for cathode design.

中文翻译:


用于水性锌离子电池的层状水合钒酸盐正极的体表面共修饰



钒基层状材料的主要挑战是其溶解倾向和体相结构的不稳定性,导致循环性能不令人满意,特别是在较低电流密度下。在此,我们提出了双离子掺杂和原位形成阴极电解质界面(CEI)的共修饰策略。双离子,由碱金属离子(Na + 或 K + )和碱土金属离子(Ca 2+ 或 Ba < b3>),稳定体相。后者与电解液中的 SO 4 2− 形成沉淀物作为原位 CEI,具有稳定性和 pH 适应性的平衡。基于从体相到表面的稳定阴极,Ca 0.56 Na 1.19 V 6 O 16 ·4.09H 2 电解质时,全电池在 0.2 A g −1 和 25 °C 下循环 120 次后仍保留 99.4% 的容量。此外,在0.1 A g −1 和-30 °C下循环1000次后,其容量保持率为84.5%。通过分析表征和密度泛函理论(DFT)计算研究了 Zn 2+ /H + 插层机制,这表明质子(脱)插层在 -30 °C 时受到限制,导致中值放电电压从 0.705 增加到 0.795 V。共修饰阴极在 0.1 A g −1 ) 2 电解质中表现出显着的性能。 /b18> 和 −30 °C(2000 次循环后容量保持率为 90.8%)。共修饰策略为阴极设计提供了可行的选择。
更新日期:2024-05-06
down
wechat
bug