当前位置: X-MOL 学术Sustain. Mater. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigating dual-functional Al-doped stannic oxide nanorods towards photodegradation of real industry wastes and dye-sensitized solar cell application: An experimental and theoretical interpretation
Sustainable Materials and Technologies ( IF 9.6 ) Pub Date : 2024-04-23 , DOI: 10.1016/j.susmat.2024.e00948
S. Jayapandi , S. Premkumar , B. Murali , D. Lakshmi , S. Gracelin Juliana , Asma A. Alothman , Saikh M. Wabaidur , Mani Govindasamy , S.K. Nataraj

In this work, we demonstrate a uniquely designed Tin (IV) Oxide (SnO)-based nanomaterials for energy and environmental applications. Here, the Al-doped SnO nanorods (NR) at various concentrations ranging from 3 wt% to 9 wt% carried out following facile co-precipitation technique which induced synergic structural, optical and electrical properties in resulting products. Further, the Al-incorporation induced considerable changes to the structural, optical, and electrical characteristics turning SnO nanorods to Al-SnO nanocubes (NCs). Resulting changes from nanorod to nanocubes were closely monitored using various characterization techniques, which were then effectively utilized for photocatalytic degradation of important textile industry dyes, encompassing both cationic (MB, CV) and anionic (EBT) types. Optimal Al-doped SnO NC (6 wt%) demonstrated significant degradation efficiencies for organic pollutant and textile industry effluents under direct sunlight exposure. On the other hand, combination of optical and electrical properties was utilized in dye-sensitive solar cells (DSSCs) to achieve noteworthy efficiency of 6.33%, surpassing that of previous reported SnO-based nanostructures. These exceptional performance nanomaterials can be attributed to the optimized morphology of the nanocubes and the reduction of the band gap from 3.24 eV to 2.75 eV facilitated by the introduction of aluminum dopant. Furthermore, synergic combination has also improved visible light excitation, substantially decreased resistance to charge carrier transfer phenomenon, improved the charge carrier concentration, as well as considerably decreased the electron/hole recombination rate. Therefore, presence of Al in SnO nanostructure has considerably improved the opto-electrical properties that were interpreted following theoretical studies. Therefore, study gives simple nanomaterials having both the photodegradation and dye-sensitive solar cell (DSSC) performance of the SnO nanostructure, as a cost-effective energy conversion and water pollution remediation tool for the near future.

中文翻译:

研究双功能铝掺杂氧化锡纳米棒对实际工业废物的光降解和染料敏化太阳能电池的应用:实验和理论解释

在这项工作中,我们展示了一种独特设计的氧化锡(IV)氧化物(SnO)基纳米材料,用于能源和环境应用。在此,采用简便的共沉淀技术对 3 wt% 至 9 wt% 范围内的不同浓度的 Al 掺杂 SnO 纳米棒 (NR) 进行处理,该技术在所得产品中产生了协同的结构、光学和电学特性。此外,Al 的掺入引起了结构、光学和电学特性的显着变化,将 SnO 纳米棒转变为 Al-SnO 纳米立方体 (NC)。使用各种表征技术密切监测从纳米棒到纳米立方体的变化,然后将其有效地用于重要纺织工业染料的光催化降解,包括阳离子(MB、CV)和阴离子(EBT)类型。最佳的掺铝 SnO NC (6 wt%) 在阳光直射下对有机污染物和纺织工业废水具有显着的降解效率。另一方面,在染料敏感太阳能电池(DSSC)中利用光学和电学特性的组合,实现了 6.33% 的显着效率,超过了之前报道的基于 SnO 的纳米结构。这些卓越性能的纳米材料可归因于纳米立方体的优化形态以及铝掺杂剂的引入促进带隙从 3.24 eV 降低至 2.75 eV。此外,协同组合还改善了可见光激发,显着降低了对载流子转移现象的抵抗力,提高了载流子浓度,并显着降低了电子/空穴复合率。因此,SnO 纳米结构中 Al 的存在大大改善了理论研究后解释的光电特性。因此,研究给出了同时具有SnO纳米结构的光降解和染料敏感太阳能电池(DSSC)性能的简单纳米材料,作为在不久的将来具有成本效益的能源转换和水污染修复工具。
更新日期:2024-04-23
down
wechat
bug