当前位置: X-MOL 学术Adv. Opt. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multi‐Wavelength Optoelectronic Synaptic Transistors Based on Transition Metal Telluride‐Sulfide Heterostructures
Advanced Optical Materials ( IF 9 ) Pub Date : 2024-04-30 , DOI: 10.1002/adom.202400037
Shreyasi Das 1 , Varinder Pal 2 , Shubhrasish Mukherjee 3 , Soumen Das 4 , Chandra Sekhar Tiwary 2 , Samit K. Ray 5
Affiliation  

Neuromorphic visual systems based on optogenetic techniques have colossal potential for in‐memory computing with prospects of developing artificial intelligence vision systems. However, conventional transistor architectures face formidable challenges in efficient signal processing owing to limitations in the intrinsic properties of active channel materials. In this work, a novel transition metal telluride‐sulfide hybrid heterojunction‐based optoelectronic synaptic phototransistor is proposed, in which UV–vis responsive zinc oxide encapsulated few‐layer tungsten disulfide channel is decorated with near‐infrared sensitive 0D cobalt ditelluride (CoTe2) nanocrystals (NCs), eliciting the ability to sense, store, and process optical signals across a broad range of the electromagnetic spectrum. This meticulously designed three‐layered heterostructure, based on their interfacial band alignments, enables high photoresponsivity up to ≈2.6 × 103 A W−1 at a back‐gate bias of 20 V, leading to the brain‐inspired synaptic applications with an average power consumption as low as 75 pJ for each training process. The device exhibits excitatory postsynaptic current, paired‐pulse facilitation with an index above 150%, as well as light‐modulated synaptic plasticity by mimicking biological synapses, which mainly originate from trapped holes in Co‐vacancy mediated surface defect states of CoTe2 NCs. Hence, this 2D material‐based hybrid phototransistor appears to be a promising candidate for energy‐efficient next‐generation brain‐inspired neuromorphic vision systems.

中文翻译:

基于过渡金属碲化物-硫化物异质结构的多波长光电突触晶体管

基于光遗传学技术的神经形态视觉系统在内存计算方面具有巨大的潜力,具有开发人工智能视觉系统的前景。然而,由于有源沟道材料固有特性的限制,传统晶体管架构在有效信号处理方面面临着巨大的挑战。在这项工作中,提出了一种新型过渡金属碲化物-硫化物混合异质结光电突触光电晶体管,其中紫外-可见光响应氧化锌封装的少层二硫化钨通道装饰有近红外敏感的0D二碲化钴(CoTe)2)纳米晶体(NC),具有在广泛的电磁频谱范围内感测、存储和处理光信号的能力。这种精心设计的三层异质结构基于其界面能带排列,可实现高达约 2.6 × 10 的高光响应性3爱华−1在 20 V 的背栅偏置下,每个训练过程的平均功耗低至 75 pJ。该器件表现出兴奋性突触后电流、指数高于 150% 的成对脉冲促进,以及通过模仿生物突触的光调制突触可塑性,这主要源自 Co-空位介导的 CoTe 表面缺陷态中的捕获空穴2NC。因此,这种基于二维材料的混合光电晶体管似乎是节能的下一代大脑启发神经形态视觉系统的有前途的候选者。
更新日期:2024-04-30
down
wechat
bug