当前位置: X-MOL 学术Adv. Opt. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ternary Cocrystal with Long‐Lived Charge‐Transfer State for Efficient Light Conversion Applications
Advanced Optical Materials ( IF 9 ) Pub Date : 2024-04-29 , DOI: 10.1002/adom.202400747
Yejun Xiao 1 , Lifang Liu 2, 3 , Peng Xu 1 , Fengke Sun 1, 2 , Feng Li 1, 2 , Xuan Liu 3 , Yanfeng Yin 1 , Jing Leng 1 , Fuxiang Zhang 3 , Shengye Jin 1
Affiliation  

Charge‐transfer (CT) cocrystals have attracted continuous interest for their promising optical and optoelectronic applications. To improve the performance of this class of material, a CT cocrystal with long‐lived CT excitons is highly desired. Herein, the development of a pyrene‐doped trans‐1,2‐diphenylethylene‐1,2,4,5‐tetracyanobenzene ternary cocrystal (named P‐TS‐TC) is reported. Compared to the undoped binary cocrystals (without pyrene), P‐TS‐TC exhibits a two times longer CT exciton lifetime (≈60.2 ns), and thus 8.8‐ and 16.6‐times improvement in photocurrent response and photocatalytic H2 evolution activity. By using transient photoluminescence spectroscopy, it is uncovered that the absorbed photon energy in P‐TS‐TC is localized to a lower energy CT state through an efficient energy transfer process (≈389.8 ps) between two co‐existing CT states. The CT exciton lifetime is prolonged due to the weakened CT coupling strength, as a result of the enlarged donor‐acceptor distance and the change of geometric structure. The result is expected to inspire the design of cocrystals with manipulatable CT exciton properties and to promote the potential application of multi‐component CT cocrystals.

中文翻译:

具有长寿命电荷转移状态的三元共晶,适用于高效光转换应用

电荷转移(CT)共晶因其有前景的光学和光电应用而引起了人们的持续关注。为了提高此类材料的性能,非常需要具有长寿命 CT 激子的 CT 共晶。本文中,开发了一种芘掺杂的反式‐1,2-二苯基乙烯-1,2,4,5-四氰基苯三元共晶(命名为P-TS‐TC)被报道。与未掺杂的二元共晶(不含芘)相比,P-TS‐TC表现出两倍长的 CT 激子寿命(约 60.2 ns),因此光电流响应和光催化 H 提高了 8.8 倍和 16.6 倍2进化活动。通过使用瞬态光致发光光谱,发现 P-T 中吸收的光子能量S‐TC通过两个共存的 CT 状态之间的有效能量转移过程(约 389.8 ps),局部化到较低能量的 CT 状态。由于供体-受体距离的增大和几何结构的变化,CT耦合强度减弱,CT激子寿命延长。该结果有望启发具有可操纵CT激子特性的共晶的设计,并促进多组分CT共晶的潜在应用。
更新日期:2024-04-29
down
wechat
bug