当前位置: X-MOL 学术ACS Energy Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
UREAlity Check: Approaching the Rising Field of Electrofertilizers
ACS Energy Letters ( IF 22.0 ) Pub Date : 2024-04-25 , DOI: 10.1021/acsenergylett.4c00820
Michele Ferri 1
Affiliation  

Figure 1. Schematic of an advanced electrochemical setup for the electrochemical urea synthesis, “borrowed” from the field of CO2RR. (23,24) (a) CO2 gas cylinder; (b) Ar gas cylinder; (c) CO2 mass flow controller (MFC); (d) Ar MFC; (e) three-way gas valve; (f) catholyte reservoir; (g) anolyte reservoir; (h) pH meter; (i) dual-channel peristaltic pump; (j) three-compartment flow cell; (k) acid scrubber (containing, e.g., 1 M H2SO4); (l) gas dryer; (m) gas outlet mass flow meter (MFM); (n) in-line gas chromatograph (GC); (o) pressure dampeners; and (p) backpressure regulators. Figure 2. Qualitative depiction of the activities of individual reactions involved in E-UREA from low (red, left) to high (blue, right) pH. The dashed green line highlights the pH region in which CO2RR + NO3RR coupling to urea is envisaged. Dark orange spheres ideally represent catalyst nanoparticles with the gray region being a gas diffusion layer/current collector. Figure 3. Qualitative depiction of the reactions, spectra, and chromatograms that are typical of the most common urea detection methods together with their strengths and weaknesses. Additional comments on this figure can be found in the Supporting Information. Figure 4. Flowchart indicating all the necessary steps for E-UREA to achieve unbiased products quantification and to approach industrial relevance. The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsenergylett.4c00820. Additional literature references and comments on each of the sections of the present manuscript (PDF) Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html. As the single author, M.F. conceived the ideas behind the paper and fully wrote it in its entirety. The author is grateful to Martina Rizzo (Ph.D. student at the Italian Institute of Technology, IIT) for her continuous striving to improve the production and detection of urea in our laboratories and for the discussion originated from her work; Dr. Luca Goldoni (Chief Technician at the Materials Characterization Facility of IIT) for the help and discussion on NMR methods; Dr. Sine Mandrup Bertozzi (Senior Technician at the Analytical Chemistry Facility of IIT) and Dr. Andrea Armirotti (Technologist and Facility coordinator of the Analytical Chemistry Facility of IIT) for the help and discussion on chromatographic methods; and Thi-Hong-Hanh Le (Ph.D. student at IIT), Dr. Yong Zuo (postdoc researcher at IIT), Dr. Manjunath Chatti (postdoc researcher at IIT), Dr. Sebastiano Bellani (researcher at BeDimensional S.p.A.), and Prof. Liberato Manna (PI and group leader at IIT) for their comments and suggestions on the first draft of the manuscript. Views expressed in this Viewpoint are those of the author and not necessarily the views of the ACS. This article references 56 other publications. This article has not yet been cited by other publications. Figure 1. Schematic of an advanced electrochemical setup for the electrochemical urea synthesis, “borrowed” from the field of CO2RR. (23,24) (a) CO2 gas cylinder; (b) Ar gas cylinder; (c) CO2 mass flow controller (MFC); (d) Ar MFC; (e) three-way gas valve; (f) catholyte reservoir; (g) anolyte reservoir; (h) pH meter; (i) dual-channel peristaltic pump; (j) three-compartment flow cell; (k) acid scrubber (containing, e.g., 1 M H2SO4); (l) gas dryer; (m) gas outlet mass flow meter (MFM); (n) in-line gas chromatograph (GC); (o) pressure dampeners; and (p) backpressure regulators. Figure 2. Qualitative depiction of the activities of individual reactions involved in E-UREA from low (red, left) to high (blue, right) pH. The dashed green line highlights the pH region in which CO2RR + NO3RR coupling to urea is envisaged. Dark orange spheres ideally represent catalyst nanoparticles with the gray region being a gas diffusion layer/current collector. Figure 3. Qualitative depiction of the reactions, spectra, and chromatograms that are typical of the most common urea detection methods together with their strengths and weaknesses. Additional comments on this figure can be found in the Supporting Information. Figure 4. Flowchart indicating all the necessary steps for E-UREA to achieve unbiased products quantification and to approach industrial relevance. This article references 56 other publications. The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsenergylett.4c00820. Additional literature references and comments on each of the sections of the present manuscript (PDF) Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

中文翻译:

UREality 检查:接近电肥料的崛起领域

图 1. 电化学尿素合成的先进电化学装置示意图,“借用”自 CO 2 RR领域。 (23,24)(a)CO 2气瓶; (b) 氩气瓶; (c)CO 2质量流量控制器(MFC); (d) 氩气 MFC; (e) 三通燃气阀; (f) 阴极电解液储存器; (g)阳极电解液储存器; (h) pH计; (i) 双通道蠕动泵; (j) 三室流通池; (k)酸洗涤器(含有例如1 MH 2 SO 4 ); (l) 气体干燥器; (m)气体出口质量流量计(MFM); (n) 在线气相色谱仪(GC); (o) 压力阻尼器; (p) 背压调节器。图 2. E-UREA 所涉及的各个反应的活性从低(红色,左)到高(蓝色,右)pH 的定性描述。绿色虚线突出显示了 CO 2 RR + NO 3的 pH 区域设想RR与尿素偶联。深橙色球体理想地代表催化剂纳米颗粒,灰色区域是气体扩散层/集电器。图 3. 最常见尿素检测方法的典型反应、光谱和色谱图的定性描述及其优点和缺点。对此图的其他评论可以在支持信息中找到。图 4. 流程图显示了 E-UREA 实现公正的产品量化和接近工业相关性的所有必要步骤。支持信息可在 https://pubs.acs.org/doi/10.1021/acsenergylett.4c00820 免费获取。对本手稿各部分的其他文献参考和评论 (PDF) 大多数电子支持信息文件无需订阅 ACS 网络版即可获得。此类文件可以按文章下载用于研究用途(如果有链接到相关文章的公共使用许可证,则该许可证可能允许其他用途)。可以通过 RightsLink 许可系统提出请求,从 ACS 获得许可用于其他用途:http://pubs.acs.org/page/copyright/permissions.html。作为唯一作者,MF 构思了论文背后的想法并完整地撰写了全文。作者感谢Martina Rizzo(意大利理工学院博士生)对我们实验室尿素生产和检测的不断努力以及源于她工作的讨论; Luca Goldoni 博士(印度理工学院材料表征中心首席技术员)对 NMR 方法的帮助和讨论; Sine Mandrup Bertozzi 博士(IIT 分析化学设施高级技术员)和 Andrea Armirotti 博士(IIT 分析化学设施技术专家和设施协调员)对色谱方法的帮助和讨论;和Thi-Hong-Hanh Le(印度理工学院博士生)、Yong Zuo 博士(印度理工学院博士后研究员)、Manjunath Chatti 博士(印度理工学院博士后研究员)、Sebastiano Bellani 博士(BeDimensional SpA 研究员)、以及 Liberato Manna 教授(IIT 的 PI 和组长)对初稿的评论和建议。本观点中表达的观点是作者的观点,并不一定代表 ACS 的观点。本文引用了 56 篇其他出版物。这篇文章尚未被其他出版物引用。图 1. 电化学尿素合成的先进电化学装置示意图,“借用”自 CO 2 RR领域。 (23,24)(a)CO 2气瓶; (b) 氩气瓶; (c)CO 2质量流量控制器(MFC); (d) 氩气 MFC; (e) 三通燃气阀; (f) 阴极电解液储存器; (g)阳极电解液储存器; (h) pH计; (i) 双通道蠕动泵; (j) 三室流通池; (k) 酸洗涤器(含有例如 1 MH2 SO 4 ); (l) 气体干燥器; (m)气体出口质量流量计(MFM); (n) 在线气相色谱仪(GC); (o) 压力阻尼器; (p) 背压调节器。图 2. E-UREA 所涉及的各个反应的活性从低(红色,左)到高(蓝色,右)pH 的定性描述。绿色虚线突出显示了设想CO 2 RR + NO 3 RR 与尿素偶联的pH 区域。深橙色球体理想地代表催化剂纳米颗粒,灰色区域是气体扩散层/集电器。图 3. 最常见尿素检测方法的典型反应、光谱和色谱图的定性描述及其优点和缺点。对此图的其他评论可以在支持信息中找到。图 4. 流程图显示了 E-UREA 实现公正的产品量化和接近工业相关性的所有必要步骤。本文引用了 56 篇其他出版物。支持信息可在 https://pubs.acs.org/doi/10.1021/acsenergylett.4c00820 免费获取。对本手稿各部分的其他文献参考和评论 (PDF) 大多数电子支持信息文件无需订阅 ACS 网络版即可获得。此类文件可以按文章下载用于研究用途(如果有链接到相关文章的公共使用许可证,则该许可证可能允许其他用途)。可以通过 RightsLink 许可系统提出请求,从 ACS 获得许可用于其他用途:http://pubs.acs.org/page/copyright/permissions.html。
更新日期:2024-04-25
down
wechat
bug