当前位置: X-MOL 学术Energy Storage Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Achieving highly reversible regulation of zinc deposition through ultrafast in situ construction of multifunctional zinc anode interfaces
Energy Storage Materials ( IF 20.4 ) Pub Date : 2024-04-11 , DOI: 10.1016/j.ensm.2024.103403
Pengtao Wang , Kaifeng Yu , Haonan Wang , Tingting Jia , Xiaofeng Wang , Ce Liang

The zinc anode surface suffers from severe zinc dendrite growth and side reactions, such as hydrogen evolution, significantly diminishing its reversibility and cycle life. In this study, we have introduced and successfully implemented, for the first time, the ultrafast in-situ construction of a periodic semi-spherical multifunctional interfacial layer composed of copper nanoparticles (Cu|Zn) on the zinc anode surface. By optimizing the distribution of the electric field and Zn concentration, we effectively mitigate the “Tip effect”, achieving highly reversible control over zinc deposition, and the in-situ construction process takes only 3 min. Theoretical calculations and COMSOL simulations demonstrate that the Cu|Zn anode exhibits high binding energy, a uniform electric field, and Zn concentration distribution. Experimental results reveal that the Cu|Zn anode achieves exceptional long-term cyclic stability, exceeding 3200 h at 1 mA cm and remaining cyclically stable for over 2000 h at 5 mA cm. Furthermore, in a full cell with MnO@MXene as the cathode material, the Cu|Zn anode delivers a capacity of 282.1 mA h after 1400 cycles at 2 A . This study holds significance for the rational design of high-stability and reversible interface layers, promoting their practical application in aqueous zinc-ion batteries (AZBs).

中文翻译:

通过超快原位构建多功能锌阳极界面实现锌沉积的高度可逆调控

锌阳极表面会遭受严重的锌枝晶生长和副反应(例如析氢),从而显着降低其可逆性和循环寿命。在这项研究中,我们首次引入并成功实现了在锌阳极表面超快原位构建由铜纳米颗粒(Cu | Zn)组成的周期性半球形多功能界面层。通过优化电场分布和锌浓度,有效缓解“尖端效应”,实现锌沉积的高度可逆控制,原位施工过程仅需3分钟。理论计算和 COMSOL 模拟表明 Cu|Zn 阳极具有高结合能、均匀的电场和 Zn 浓度分布。实验结果表明,Cu|Zn阳极实现了优异的长期循环稳定性,在1 mA cm下超过3200小时,在5 mA cm下保持超过2000小时的循环稳定性。此外,在以 MnO@MXene 作为阴极材料的全电池中,Cu|Zn 阳极在 2 A 电流下循环 1400 次后容量为 282.1 mA h。该研究对于合理设计高稳定性和可逆界面层,促进其在水系锌离子电池(AZB)中的实际应用具有重要意义。
更新日期:2024-04-11
down
wechat
bug