当前位置: X-MOL 学术ACS Synth. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nano-Regulation of Gene Expression in Chlamydomonas reinhardtii: Harnessing AuNPs for Remotely Switchable Lipid Biosynthesis via Antisense Oligonucleotides
ACS Synthetic Biology ( IF 4.7 ) Pub Date : 2024-03-28 , DOI: 10.1021/acssynbio.3c00650
Nahid Rafiei 1, 2, 3 , Hossein Alishah Aratboni 2, 3 , Abbas Alemzadeh 1 , Santiago Saavedra-Alonso 3 , Hooman Razi 1 , José Rubén Morones-Ramírez 2, 3
Affiliation  

Antisense oligonucleotide (ASO)-mediated gene silencing has broad applications, spanning from biomedicine to agriculture, involving molecular biology, synthetic biology, and genetic manipulation. This research harnessed nanotechnology to augment ASO-mediated gene silencing, introducing a remotely switchable gene expression system for precise temporal control. We targeted lipid biosynthesis and accumulation enhancement in the photosynthetic eukaryote Chlamydomonas reinhardtii. Gold nanoparticles (AuNPs) transported double-stranded DNA (dsDNA), forming dsDNA–AuNP complexes. These complexes comprised 3′-thiolated sense strands attached to AuNPs and fluorescent antisense oligonucleotides. To avoid harmful laser effects on cells, we adopted a light-emitting diode (LED). Confocal microscopy confirmed dsDNA–AuNP internalization in C. reinhardtii. LED-triggered antisense release led to an 83% decrease in Citrate Synthase 2 (CIS 2) expression. Thiolated sense strand attachment postillumination inhibited antisense reannealing, enhancing gene silencing. This led to significant lipid body accumulation in cells, verified through fluorometric and fluorescence microscopy. This union of nanotechnology and ASO-mediated silencing provides gene regulation opportunities across sectors like biomedicine and agriculture. The system’s remote switching capability underscores its potential in synthetic biology and genetic engineering. Our findings substantiate the utility of this approach for enhancing lipid biosynthesis in C. reinhardtii but also underscores its broader applicability to other organisms, fostering the development of novel solutions for pressing global challenges in energy, agriculture, and healthcare.

中文翻译:

莱茵衣藻基因表达的纳米调控:利用 AuNP 通过反义寡核苷酸进行远程可切换脂质生物合成

反义寡核苷酸(ASO)介导的基因沉默具有广泛的应用,从生物医学到农业,涉及分子生物学、合成生物学和基因操作。这项研究利用纳米技术增强 ASO 介导的基因沉默,引入远程可切换基因表达系统以实现精确的时间控制。我们的目标是提高光合真核生物莱茵衣藻的脂质生物合成和积累。金纳米粒子 (AuNP) 运输双链 DNA (dsDNA),形成 dsDNA-AuNP 复合物。这些复合物包含连接到 AuNP 的 3'-硫醇化有义链和荧光反义寡核苷酸。为了避免激光对细胞产生有害影响,我们采用了发光二极管 (LED)。共聚焦显微镜证实了C中的 dsDNA-AuNP 内化。莱茵哈蒂。 LED 触发的反义释放导致柠檬酸合成酶 2 (CIS 2) 表达减少 83% 。光照后硫醇化有义链附着抑制反义重退火,增强基因沉默。这导致细胞中脂质体显着积累,通过荧光测定和荧光显微镜证实。纳米技术和 ASO 介导的沉默的结合为生物医学和农业等领域提供了基因调控机会。该系统的远程切换能力凸显了其在合成生物学和基因工程方面的潜力。我们的研究结果证实了这种方法在增强梭菌脂质生物合成方面的实用性。莱茵哈特还强调了其对其他生物体的更广泛适用性,促进了新解决方案的开发,以应对能源、农业和医疗保健领域紧迫的全球挑战。
更新日期:2024-03-29
down
wechat
bug