当前位置: X-MOL 学术J. Power Sources › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Regulating and understanding the compatibility of sulfide composite solid-state electrolyte in nickel-rich lithium metal batteries
Journal of Power Sources ( IF 9.2 ) Pub Date : 2024-03-24 , DOI: 10.1016/j.jpowsour.2024.234366
Haoyang Yuan , Changhao Tian , Mengyuan Song , Wenjun Lin , Tao Huang , Aishui Yu

In the pursuit of high-energy-density lithium batteries, composite solid-state electrolytes are highly favored due to the combination of flexibility and acceptable ionic conductivity. However, challenges such as unpredictable lithium dendrite growth, cathode material structural instability, and oxidative resistance at high voltages pose significant hurdles for solid-state batteries. To investigate the synergistic interactions of polymers and sulfides, a hybrid poly (1,3-dioxolane) and poly (polyethylene glycol diacrylate) blend was designed through in-situ polymerization, allowing LiFePO//Li batteries to achieve an average coulombic efficiency exceeding 99% at 0.5C and stable cycling for at least 1000 h in lithium symmetric cells. Computational analysis and component detection demonstrate the stability of the components and the formation of a LiF-stabilized anode from lithium salt decomposition. Similarly, on the cathode side, when LiPO-coated LiNiCoMnO is used as the cathode material, a more stable interface suppresses cathode particles' collapse and harmful electrolytes’ decomposition. In ambient environments, after 200 cycles at 0.5C, the capacity retention remains as high as 90.48%. Impedance changes by in-situ methods and component composition were further analyzed. This work integrates multiple methods and stabilizes and validates the anode and cathode interface, providing a promising approach and strategy for designing high-performance sulfide composite solid-state batteries.

中文翻译:

富镍锂金属电池中硫化物复合固态电解质相容性的调控和认识

在追求高能量密度锂电池的过程中,复合固态电解质由于兼具灵活性和可接受的离子电导率而备受青睐。然而,不可预测的锂枝晶生长、正极材料结构不稳定性以及高电压下的抗氧化性等挑战对固态电池构成了重大障碍。为了研究聚合物和硫化物的协同相互作用,通过原位聚合设计了杂化聚(1,3-二氧戊环)和聚(聚乙二醇二丙烯酸酯)共混物,使LiFePO//Li电池实现超过99的平均库仑效率% 在 0.5C 下并且在锂对称电池中稳定循环至少 1000 小时。计算分析和成分检测证明了成分的稳定性以及锂盐分解形成的 LiF 稳定阳极。同样,在正极侧,当使用LiPO涂层的LiNiCoMnO作为正极材料时,更稳定的界面抑制了正极颗粒的塌陷和有害电解质的分解。在常温环境下,0.5C循环200次后,容量保持率仍高达90.48%。进一步分析了原位方法和组件组成的阻抗变化。这项工作集成了多种方法,稳定并验证了阳极和阴极界面,为设计高性能硫化物复合固态电池提供了一种有前景的方法和策略。
更新日期:2024-03-24
down
wechat
bug