当前位置: X-MOL 学术ChemSusChem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modelling Photocatalytic N2 Reduction: Where We Stand and Where We Are Going
ChemSusChem ( IF 8.4 ) Pub Date : 2024-03-25 , DOI: 10.1002/cssc.202301730
Taja Žibert 1 , Blaž Likozar 2 , Matej Huš 3
Affiliation  

Artificial ammonia synthesis via the Haber‐Bosch process is environmentally problematic due to the high energy consumption and corresponding CO2 emissions, produced during the reaction and before hand in hydrogen production upon methane steam reforming. Photocatalytic nitrogen fixation as a greener alternative to the conventional Haber‐Bosch process enables us to perform nitrogen reduction reaction (NRR) under mild conditions, harnessing light as the energy source. Herein, we systematically review first‐principles calculations used to determine the electronic/optical properties of photocatalysts, N2 adsorption and to expound possible NRR mechanisms. The most commonly studied photocatalysts for nitrogen fixation are usually modified with dopants, defects, co‐catalysts and Z‐scheme heterojunctions to prevent charge carrier recombination, improve charge separation efficiency and adjust a band gap to for utilizing a broader light spectrum. Most studies at the atomistic level of modeling are grounded upon DFT calculations, wholly foregoing excitation effects paramount in photocatalysis. Hence, there is a dire need to consider methods beyond DFT to study the excited state properties more accurately. Furthermore, a few studies have been examined, which include higher level kinetics and macroscale simulations. Ultimately, we show there is still ample room for improvement with regard to first principles calculations and their integration in multiscale models.

中文翻译:

光催化 N2 还原建模:我们的现状和未来的发展方向

通过哈伯-博世工艺合成氨存在环境问题,因为反应过程中以及甲烷蒸汽重整制氢过程中会产生高能耗和相应的二氧化碳排放。光催化固氮作为传统哈伯-博世工艺的更绿色替代方案,使我们能够在温和的条件下利用光作为能源进行氮还原反应(NRR)。在此,我们系统地回顾了用于确定光催化剂的电子/光学性质、N2 吸附并阐述可能的 NRR 机制的第一原理计算。最常研究的固氮光催化剂通常用掺杂剂、缺陷、助催化剂和 Z 型异质结进行修饰,以防止载流子复合、提高电荷分离效率并调整带隙以利用更宽的光谱。大多数原子级建模研究都是基于 DFT 计算,完全忽略了光催化中最重要的激发效应。因此,迫切需要考虑 DFT 之外的方法来更准确地研究激发态特性。此外,还检查了一些研究,其中包括更高水平的动力学和宏观模拟。最终,我们表明在第一原理计算及其在多尺度模型中的集成方面仍有很大的改进空间。
更新日期:2024-03-25
down
wechat
bug