当前位置: X-MOL 学术Adv. Mater. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mediation of Interfacial Mo2C Bridging Effect in MoS2@Carbon Colloid Dots Featuring Improved Photovoltaic Performances of Si‐Based Hybrid Solar Cells
Advanced Materials Technologies ( IF 6.8 ) Pub Date : 2024-03-24 , DOI: 10.1002/admt.202301966
Ta‐Cheng Wei, Shih‐Hsiu Chen, Kuan‐Han Lin, Tsung‐Yen Wu, Po‐Hsuan Hsiao, Chia‐Yun Chen

Advances in silicon‐based hybrid solar cells with high photovoltaic performance, low synthetic cost, and sound environmental resistance are emerged as potential candidate for solar conversion. Solution‐processed few‐layer MoS2 sheets are regarded as compelling constitutes that paves ways for tailoring the solar harvesting capability; yet the improvement on charge separation of photoexcited carriers remains demanded, and the lack of environmental stability due to intentionally grabbing electrons from adsorbed moistures constrains the scope of practical assessment. In this work, the employment of MoS2/Mo2C/carbon colloid dots (CCDs) heterostructures within PEDOT:PSS matrix is invoked, where the transfer of photoexcited electrons from MoS2 is mediated with Mo2C electron‐transport channels, which further couple out the creation of positive trions by combining with defect‐bound excitons at CCD surfaces. These features dynamically involve with slow recombination probability and further improve the photovoltaic gain. Thus, the noticeable improvement of conversion efficiency of 16.1% with 1.6 times of efficiency enhancement outperforming the bare conventional hybrid solar cells is accomplished, and further exhibits a sound long‐term stability, which opens new avenues for exploiting the photophysical bound‐carrier transition on advanced photovoltaic applications.

中文翻译:

MoS2@碳胶体点中界面Mo2C桥联效应的调节可改善硅基混合太阳能电池的光伏性能

硅基混合太阳能电池具有高光伏性能、低合成成本和良好的耐环境性,已成为太阳能转换的潜在候选者。溶液处理的少层 MoS22板材被认为是引人注目的组成部分,为定制太阳能收集能力铺平了道路;然而,仍然需要改进光激发载流子的电荷分离,并且由于故意从吸附的水分中夺取电子而缺乏环境稳定性限制了实际评估的范围。在这项工作中,MoS的使用2/钼2调用 PEDOT:PSS 矩阵内的 C/碳胶体点 (CCD) 异质结构,其中来自 MoS2 的光激发电子的转移2以 Mo 为媒介2C电子传输通道,通过与CCD表面的缺陷束缚激子结合,进一步耦合正三重子的产生。这些特性动态地涉及缓慢的复合概率并进一步提高光伏增益。因此,转换效率显着提高了16.1%,效率比裸露的传统混合太阳能电池提高了1.6倍,并进一步表现出良好的长期稳定性,这为利用光物理束缚载流子跃迁开辟了新途径。先进的光伏应用。
更新日期:2024-03-24
down
wechat
bug