当前位置: X-MOL 学术Sep. Purif. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In-situ fibrillated sugarcane cell wall decorated with WO3-Ag nanocatalyst for efficient adsorption-photocatalytic removal of antibiotics from water
Separation and Purification Technology ( IF 8.6 ) Pub Date : 2024-03-20 , DOI: 10.1016/j.seppur.2024.127181
Shuqi Zhou , Xiuyu Liu , Lu Xiao , Qin Huang , Shuangfei Wang , Yan Jiang

Lignocellulose nanomaterials are extremely compelling in the remediation of organic wastewater, yet still present challenges regarding cost-efficiency, manufacturability, and scalability. Instead of a conventional bottom-up engineering, this study top-down designs multiporous, high specific surface area and anisotropic quaternized lignocellulose nano-sponge, based on the effectiveness of reactive deep eutectic solvent system on in-situ fibrillating sugarcane cell walls. The as-prepared sugarcane sponge reveals outstanding adsorption abilities for broad-spectrum antibiotics via a combination of intermolecular and electrostatic interactions, and serves as a desired carrier for hybrid nano-catalysts (e.g. WO-Ag) with enhanced overall quantum efficiency. The developed sugarcane/WO/Ag sponge integrating a functionality of adsorption enrichment with visible-light photocatalysis, can efficiently remove ∼ 99 % tetracycline/levofloxacin/norfloxacin at an initial concentration of 20 mg/L within 120 min at pH 7. The degradation pathway of antibiotics is inferred from the identified intermediates and primary active species. Additionally, the favorable mechanical strength, water stability and reusability of sugarcane/WO/Ag sponge are demonstrated, which originate from the well-organized lignocellulose fibrils in in-situ fibrillated sugarcane cell wall and their intensive interactions with anchored nanoparticles. Our study offers a novel and feasible top-down nanostructure engineering strategy to manufacture high-performance lignocellulose-based nanocomposites towards environmental remediation.

中文翻译:

原位纤维化甘蔗细胞壁用 WO3-Ag 纳米催化剂装饰,可有效吸附光催化去除水中的抗生素

木质纤维素纳米材料在有机废水的修复中非常引人注目,但在成本效率、可制造性和可扩展性方面仍然存在挑战。本研究没有采用传统的自下而上的工程,而是基于反应性深层共晶溶剂系统对原位纤维化甘蔗细胞壁的有效性,自上而下地设计了多孔、高比表面积和各向异性季铵化木质纤维素纳米海绵。所制备的甘蔗海绵通过分子间和静电相互作用的组合表现出对广谱抗生素的出色吸附能力,并可作为混合纳米催化剂(例如WO-Ag)的理想载体,并提高整体量子效率。所开发的甘蔗/WO/Ag海绵集吸附富集和可见光光催化功能于一体,可在pH 7下120分钟内有效去除初始浓度为20 mg/L的约99%四环素/左氧氟沙星/诺氟沙星。抗生素的含量是从已确定的中间体和主要活性物质中推断出来的。此外,甘蔗/WO/Ag海绵具有良好的机械强度、水稳定性和可重复使用性,这源于原位原纤化甘蔗细胞壁中组织良好的木质纤维素原纤维及其与锚定纳米颗粒的强烈相互作用。我们的研究提供了一种新颖且可行的自上而下的纳米结构工程策略,用于制造高性能木质纤维素基纳米复合材料,以实现环境修复。
更新日期:2024-03-20
down
wechat
bug