当前位置: X-MOL 学术J. Power Sources › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced all-solid-state battery performance through in-situ construction of interface modification layer
Journal of Power Sources ( IF 9.2 ) Pub Date : 2024-03-18 , DOI: 10.1016/j.jpowsour.2024.234187
Yanchen Liu , Zongliang Zhang , Siliang Liu , Yang Liu , Zhi Zhuang , Fangyang Liu

The development of high-performance all-solid-state lithium batteries (ASSLBs) relies on improving the interface stability between layered oxide cathodes and sulfide electrolytes, as well as the structural stability of cathode active materials. While coating technology is considered an effective solution, the fabrication of these coating materials using economically viable and scalable manufacturing processes remains a comprehensive and challenging task. In this study, a combination of first-principles calculations and experiments is employed to propose, for the first time, a simple and scalable aqueous process to in-situ construct an LiVO (LVO) buffer coating on the surface of LiCoO(LCO) cathode, which exhibits high ionic conductivity, relatively low electronic conductivity, and high oxidation limit. The LVO buffering coating not only facilitates the migration of lithium ions at the interface, effectively suppresses interface side reactions, and reduces interface impedance, but also enhances the mechanical and structural stability of the cathode material. As a result, the LCO/LPSC/Li-In ASSLBs with 2% LVO coating exhibit an initial discharge capacity of up to 145.6 mAh g at room temperature (0.1C), with a capacity retention of 94.89% after 100 cycles. Furthermore, the ASSLBs demonstrate good capacity and cycle stability under extreme testing conditions, including high voltage, high temperature, and low temperature, especially exhibiting an initial discharge capacity of up to 114.9 mAh g at −20 °C.

中文翻译:

通过界面改性层的原位构建增强全固态电池性能

高性能全固态锂电池(ASSLB)的发展依赖于提高层状氧化物正极与硫化物电解质之间的界面稳定性以及正极活性材料的结构稳定性。虽然涂层技术被认为是一种有效的解决方案,但使用经济上可行且可扩展的制造工艺来制造这些涂层材料仍然是一项全面且具有挑战性的任务。在这项研究中,结合第一性原理计算和实验,首次提出了一种简单且可扩展的水相工艺,在 LiCoO(LCO) 阴极表面原位构建 LiVO (LVO) 缓冲涂层,它表现出高离子电导率、相对较低的电子电导率和高氧化极限。 LVO缓冲涂层不仅有利于锂离子在界面的迁移,有效抑制界面副反应,降低界面阻抗,而且增强了正极材料的机械和结构稳定性。结果,具有2% LVO涂层的LCO/LPSC/Li-In ASSLBs在室温(0.1C)下的首次放电容量高达145.6 mAh g,100次循环后容量保持率为94.89%。此外,ASSLBs在高电压、高温和低温等极端测试条件下表现出良好的容量和循环稳定性,特别是在-20℃下首次放电容量高达114.9 mAh g。
更新日期:2024-03-18
down
wechat
bug