当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Anti-moisture, anti-bacterial cellulosic triboelectric materials enabled by hydroxyl coordination effect
Nano Energy ( IF 17.6 ) Pub Date : 2024-03-08 , DOI: 10.1016/j.nanoen.2024.109472
Pinle Zhang , Huancheng Huang , Xin Wang , Kuan Cai , Junyu Chen , Yanhao Xu , Fanchao Yu , Shuangxi Nie , Shuangfei Wang , Xinliang Liu

Owing to their low cost, customizability, and environmental stability, cellulosic triboelectric materials have emerged among polymer materials. However, the rich hydrogen bonding network inherent in cellulose limits its polarity and electron-donating ability, and charge dissipation caused by the hygroscopicity of the hydroxyl-rich groups limits its application as a triboelectric material. In this study, a more convenient, economical, and environmentally friendly "stent surgery" strategy was adopted. The wetting and swelling of fiber molecules allowed Cu (II) coordination with hydroxyl groups in nanocellulose. The coordination effect of cellulose hydroxyl groups weakens the intermolecular hydrogen bonding network, leading to an increase in the molecular dipole moment and the formation of new polar regions to regulate its space charge distribution, which significantly improved the electron-supplying capacity of the nanocellulose materials, and the maximum output power density increased by a factor of 2.78 (from 45 to 125 μW cm). Notably, the CNF-Cu (II) triboelectric material demonstrated excellent antimicrobial (>99%) and UV transmittance (<8%) as well as resistance to humidity interference, exhibiting only 5.9% voltage output loss at high humidity (90% RH). The design of this study provides new approaches for cellulose polarity modulation and energy harvesting adapted to harsh environments.

中文翻译:

羟基配位效应实现的防潮、抗菌纤维素摩擦电材料

由于其低成本、可定制性和环境稳定性,纤维素摩擦电材料在高分子材料中脱颖而出。然而,纤维素固有的丰富的氢键网络限制了其极性和给电子能力,并且富含羟基的吸湿性引起的电荷耗散限制了其作为摩擦电材料的应用。本研究采用了更加便捷、经济、环保的“支架手术”策略。纤维分子的润湿和溶胀使得铜(II)与纳米纤维素中的羟基配位。纤维素羟基的配位作用削弱了分子间氢键网络,导致分子偶极矩增大并形成新的极性区域来调节其空间电荷分布,从而显着提高了纳米纤维素材料的供电子能力,最大输出功率密度增加了2.78倍(从45μW·cm增加到125μW·cm)。值得注意的是,CNF-Cu(II)摩擦电材料表现出优异的抗菌性(>99%)和紫外线透过率(<8%)以及抗湿度干扰能力,在高湿度(90% RH)下电压输出损失仅为5.9% 。这项研究的设计为适应恶劣环境的纤维素极性调节和能量收集提供了新方法。
更新日期:2024-03-08
down
wechat
bug