当前位置: X-MOL 学术IEEE Trans. Compon. Packag. Manuf. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Two-Phase Liquid Cooling for High-Power Microelectronics via Embedded Micro-Pin Fin Heat Sink
IEEE Transactions on Components, Packaging and Manufacturing Technology ( IF 2.2 ) Pub Date : 2024-02-28 , DOI: 10.1109/tcpmt.2024.3371390
Huicheng Feng 1 , Gongyue Tang 1 , Xiaowu Zhang 1 , Boon Long Lau 1 , Ming Chinq Jong 1 , Keng Yuen Jason Au 1 , Jun Wei Javier Ong 1 , King Jien Chui 1 , Jun Li 2 , Hongying Li 2 , Duc Vinh Le 2 , Jing Lou 2
Affiliation  

Two-phase liquid cooling can achieve high heat flux and is therefore a key method for heat dissipation of high-power microelectronics. In this study, we develop an embedded two-phase liquid cooling solution with micro-pin fins embedded in a thermal test vehicle (TTV). We conduct experimental tests under various coolant (deionized (DI) water) flowrates and heat fluxes. Heat fluxes up to 181 W/cm2 (heat power 181 W) are achieved at small coolant flowrates. Chip temperature and system pressure in the two-phase regime fluctuate. By degassing the coolant prior to experimental testing, the chip temperature fluctuation span can be reduced to as low as 7.6 °C. The pressure fluctuation is also greatly suppressed. These results are beneficial for the practical application of two-phase liquid cooling in microelectronics, where chip temperature fluctuations may damage chips due to temporal overheating. In addition, the temperature and temperature gradient of chip linearly increase with increasing heat flux. They both can be reduced by increasing coolant flowrate. As coolant flowrate increases, the heat flux at which two-phase cooling occurs also increases. The present results demonstrate the effectiveness of embedded two-phase liquid cooling, which can facilitate our next step to develop embedded two-phase liquid cooling for true 3-D ICs (i.e., two-layer stacked chips).

中文翻译:

通过嵌入式微针翅片散热器为高功率微电子设备提供两相液体冷却

两相液冷可以实现高热通量,因此是高功率微电子散热的关键方法。在本研究中,我们开发了一种嵌入式两相液体冷却解决方案,其微针翅片嵌入热测试车辆 (TTV) 中。我们在各种冷却剂(去离子 (DI) 水)流量和热通量下进行实验测试。在较小的冷却剂流量下可实现高达 181 W/cm2 的热通量(热功率 181 W)。两相状态下的芯片温度和系统压力会波动。通过在实验测试之前对冷却剂进行脱气,芯片温度波动范围可降至 7.6 °C。压力波动也被大大抑制。这些结果有利于两相液体冷却在微电子领域的实际应用,在微电子领域,芯片温度波动可能会因暂时过热而损坏芯片。此外,芯片的温度和温度梯度随着热通量的增加而线性增加。它们都可以通过增加冷却剂流量来减少。随着冷却剂流量的增加,发生两相冷却的热通量也增加。目前的结果证明了嵌入式两相液体冷却的有效性,这可以促进我们下一步为真正的3D IC(即两层堆叠芯片)开发嵌入式两相液体冷却。
更新日期:2024-02-28
down
wechat
bug