当前位置: X-MOL 学术Chem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanically flexible piezoelectric organic single crystals for electrical energy harvesting
Chem ( IF 23.5 ) Pub Date : 2024-02-15 , DOI: 10.1016/j.chempr.2024.01.019
Surojit Bhunia , Sumanta Kumar Karan , Rituparno Chowdhury , Ishita Ghosh , Subhankar Saha , Kaustav Das , Amit Mondal , Aman Nanda , Bhanu Bhusan Khatua , C. Malla Reddy

Piezoelectric crystalline materials—a class of ordered materials that can derive electric current due to charge accumulation via electromechanical coupling—have gained tremendous interest owing to their use as highly portable energy sources; however, the exceptional mechanical bendability coupled with high crystallinity offered by molecular single crystals is yet to be explored. Here, we present the discovery of a mechanically flexible (bendable) all-organic single-crystalline material exhibiting a remarkable piezoelectric energy-harvesting property. These soft piezoelectric crystals, with helical structure and the presence of predominantly weak noncovalent interactions therein, allowed us to fabricate flexible, electrical energy-harvesting devices using a polymer matrix, which yielded instantaneous peak power density of ∼66 μW/cm3 with an excellent energy conversion efficiency of ∼41%. The real-life application potential of the devices is validated by successfully powering LEDs and showcasing sensitivity to biomechanical activity. This research lays the foundation for designing flexible and environmentally friendly electronics using mechanically flexible organic single crystals.



中文翻译:

用于电能收集的机械柔性压电有机单晶

压电晶体材料是一类有序材料,可以通过机电耦合通过电荷积累而产生电流,由于其用作高度便携的能源而引起了极大的兴趣;然而,分子单晶所提供的卓越的机械弯曲性和高结晶度仍有待探索。在这里,我们发现了一种机械柔性(可弯曲)全有机单晶材料,该材料表现出卓越的压电能量收集特性。这些软压电晶体具有螺旋结构,并且其中存在主要较弱的非共价相互作用,使我们能够使用聚合物基质制造柔性电能收集装置,该装置产生~66 μW/cm 3的瞬时峰值功率密度,并具有优异的性能。能量转换效率~41%。通过成功为 LED 供电并展示对生物力学活动的敏感性,验证了该设备的实际应用潜力。这项研究为使用机械柔性有机单晶设计柔性环保电子产品奠定了基础。

更新日期:2024-02-15
down
wechat
bug