当前位置: X-MOL 学术Earth Sci. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stratigraphy in space and time: A reproducible approach to analysis and visualization
Earth-Science Reviews ( IF 12.1 ) Pub Date : 2024-02-05 , DOI: 10.1016/j.earscirev.2024.104706
Zoltán Sylvester , Kyle M. Straub , Jacob A. Covault

Time-elevation plots and chronostratigraphic diagrams are valuable for understanding and analyzing stratigraphy when time-elevation data, or some approximation of them, are available, for example in flume experiments, numerical models, and three-dimensional seismic reflection surveys. We developed a Python module called , aimed at the reproducible analysis and visualization of stratigraphy, and we use it here to explore data from forward stratigraphic models of meandering channels, the eXperimental EarthScape (XES) facility XES-02 experiment, and two experiments that were conducted at the Tulane University Sediment Dynamics and Stratigraphy Laboratory. We use these tools to generate and visualize three-dimensional chronostratigraphic diagrams, compute maps of stratigraphic completeness and other stratigraphic attributes, and explore the nature of the erosional surfaces. We show that, using a 3D Wheeler diagram, it is possible to create maps of important stratigraphic attributes, in addition to the conventional thickness maps. There are six fundamental stratigraphic attributes that are direct consequences of a quantitative chronostratigraphic approach, as follows. (1) Sediments that were preserved after deposition have a thickness and (2) a duration; normalized by the total time, this duration of preserved deposition is called stratigraphic completeness. (3) The duration of deposition of sediment that was eroded later (called vacuity); (4) the thickness of these sediments is the eroded thickness. (5) At any given geographic location, erosion occurs some of the time, and the duration of these erosive periods is the fifth quantity. (6) Finally, it is quite common that neither significant deposition nor erosion takes place for some time and the duration of this can be considered at every location. These maps give an overview of where erosion or deposition dominate in a source-to-sink system, and for how long; and they make it possible to quickly identify sites with both a high degree of stratigraphic completeness and a significant thickness.

中文翻译:

空间和时间地层学:一种可重复的分析和可视化方法

当时间高程数据或其某些近似值可用时,例如在水槽实验、数值模型和三维地震反射勘测中,时间高程图和年代地层图对于理解和分析地层学非常有价值。我们开发了一个名为 的 Python 模块,旨在进行地层学的可重复分析和可视化,我们在这里使用它来探索来自蜿蜒河道的正向地层模型、实验 EarthScape (XES) 设施 XES-02 实验以及两个实验的数据。在杜兰大学沉积物动力学和地层学实验室进行。我们使用这些工具生成和可视化三维年代地层图,计算地层完整性和其他地层属性的地图,并探索侵蚀表面的性质。我们表明,除了传统的厚度图之外,使用 3D Wheeler 图还可以创建重要地层属性的地图。有六个基本地层属性是定量年代地层方法的直接结果,如下所示。 (1) 沉积后保存的沉积物具有厚度和 (2) 持续时间;通过总时间归一化,保存沉积的持续时间称为地层完整性。 (3)后来被侵蚀的沉积物沉积的持续时间(称为真空); (4)这些沉积物的厚度就是被侵蚀的厚度。 (5) 在任何给定的地理位置,侵蚀有时会发生,这些侵蚀期的持续时间是第五个量。 (6) 最后,在一段时间内既没有发生明显的沉积也没有发生侵蚀是很常见的,并且在每个位置都可以考虑这种情况的持续时间。这些地图概述了从源到汇系统中侵蚀或沉积占主导地位的位置以及持续时间;它们使得快速识别具有高度地层完整性和显着厚度的地点成为可能。
更新日期:2024-02-05
down
wechat
bug