当前位置: X-MOL 学术Hydrometallurgy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Solubility of neodymium and dysprosium sulfates at different pH and temperature and the effect of yttrium sulfate, sodium sulfate, and ammonium sulfate mixtures: Strengthening the predictive capacities of the OLI software
Hydrometallurgy ( IF 4.7 ) Pub Date : 2023-12-15 , DOI: 10.1016/j.hydromet.2023.106253
Spencer Cunningham , Maxwell Etherington-Rivas , Gisele Azimi

This study focuses on investigating the solubilities of two rare earth element (REE) sulfate salts, Nd2(SO4)3 (representing light REEs) and Dy2(SO4)3 (representing heavy REEs), under various conditions. Four different systems are studied: 1) binary REE2(SO4)3–H2O system at natural pH and temperatures of 25, 46, 65, and 80 °C, 2) ternary REE2(SO4)3–NaOH–H2O system, covering a pH range from 7 down to neutral, at temperatures of 25, 46, 65, and 80 °C, 3) ternary REE2(SO4)3–Y2(SO4)3–H2O system, involving Y2(SO4)3 concentrations ranging from 0 to 20 g/L, pH values of 3 and 7, all at 25 °C, and 4) quaternary REE2(SO4)3–Na2SO4–(NH4)2SO4–H2O system, encompassing Na2SO4 and (NH4)2SO4 concentrations varying from 0 to 20 g/L, pH values of 3 and 7, and at 25 °C. Solubilities of Nd2(SO4)3 and Dy2(SO4)3 decrease as temperature rises, attributed to the exothermic dissolution reactions. Within pH 2 to 5, solubilities remain relatively constant, but at higher pH, they decrease due to the formation of REE2(SO4)(OH)4(H2O)2 (rare earth sulfate hydroxide hydrate). Addition of Y2(SO4)3 does not significantly affect solubilities because of the relatively low Y2(SO4)3 concentration range (below 0.03 mol/kg of water), but solubilities are lower at pH 7 due to REE2SO4OH4H2O2 formation. For Nd2(SO4)3, solubility decreases with increasing Na2SO4 and (NH4)2SO4 concentrations, especially at pH 3 due to the formation of NaNd(SO4)2(H2O) (sodium neodymium bis(sulfate) hydrate) which is also confirmed by the decrease in Na2SO4 concentration compared with the target value. However, at pH 7, the concentration of Na2SO4 is much closer to the target range. This suggests that the formation of NaNd(SO4)2(H2O) is less significant at pH 7 and most of Nd precipitates as Nd2SO4OH4H2O2. For Dy2(SO4)3, solubility increases with increasing sulfate concentrations again due to the to the formation of REESO4+ and REE(SO4)2 complexes but the solubility is lower at pH 7 due to Dy2SO4OH4H2O2 and DySO4OH formation. The outcomes of this investigation represent a notable augmentation to the existing repository of solubility data for Nd2(SO4)3 and Dy2(SO4)3. These particular systems were deliberately chosen to emulate the process of extracting rare earth elements (REEs) from ion-adsorbed clays. Nonetheless, the implications of this research extend beyond this context and hold relevance for various procedures that involve the handling of REEs in sulfate-based environments. One prominent application of these findings lies in the augmentation of thermodynamic models, notably the MSE model integrated into the OLI software. Through the incorporation of this new dataset, the OLI software is poised to become a more potent tool for forecasting and simulating the chemistry of rare earth sulfate systems. This advancement bears significant promise for forthcoming research endeavors and industrial applications where precise modeling of REE behavior is of paramount importance.



中文翻译:

硫酸钕和硫酸镝在不同 pH 值和温度下的溶解度以及硫酸钇、硫酸钠和硫酸铵混合物的影响:增强 OLI 软件的预测能力

本研究重点研究两种稀土元素 (REE) 硫酸盐 Nd 2 (SO 4 ) 3 (代表轻 REE)和 Dy 2 (SO 4 ) 3(代表重 REE)在不同条件下的溶解度。研究了四种不同的系统:1)自然 pH 值和温度为 25、46、65 和 80 °C 的二元 REE 2 (SO 4 ) 3 –H 2 O 系统,2) 三元 REE 2 (SO 4 ) 3 –NaOH –H 2 O 系统,pH 范围从 7 到中性,温度为 25、46、65 和 80 °C,3) 三元 REE 2 (SO 4 ) 3 –Y 2 (SO 4 ) 3 –H 2 O 系统,涉及 Y 2 (SO 4 ) 3浓度范围为 0 至 20 g/L,pH 值为 3 和 7,均在 25 °C 下,以及 4) 四元 REE 2 (SO 4 ) 3 –Na 2 SO 4 –(NH 4 ) 2 SO 4 –H 2 O系统,包括Na 2 SO 4和(NH 4 ) 2 SO 4浓度范围为0至20 g/L,pH值为3和7,温度为25 °C 。由于放热溶解反应,Nd 2 (SO 4 ) 3和Dy 2 (SO 4 ) 3的溶解度随着温度升高而降低。在pH 2 至5 内,溶解度保持相对恒定,但在较高pH 下,由于形成REE 2 (SO 4 )(OH) 4 (H 2 O) 2(稀土氢氧化硫酸盐水合物),溶解度降低。由于 Y 2 (SO 4 ) 3浓度范围相对较低(低于 0.03 mol/kg 水),添加Y 2 (SO 4 ) 3不会显着影响溶解度,但由于以下原因,在 pH 7 时溶解度较低稀土元素2S44H22形成。对于 Nd 2 (SO 4 ) 3 ,溶解度随着 Na 2 SO 4和 (NH 4 ) 2 SO 4浓度的增加而降低,特别是在 pH 3 时,由于形成 NaNd(SO 4 ) 2 (H 2 O)(钕钠)与目标值相比, Na 2 SO 4浓度的降低也证实了这一点。然而,在pH 7 时,Na 2 SO 4的浓度更接近目标范围。这表明 NaNd(SO 4 ) 2 (H 2 O)的形成在 pH 7 时不太显着,并且大多数 Nd 沉淀为2S44H22。对于 Dy 2 (SO 4 ) 3,由于 REESO 4 +和 REE(SO 4 ) 2 -复合物的形成,溶解度再次随着硫酸盐浓度的增加而增加,但在 pH 7 时溶解度较低,因为2S44H22S4形成。这项研究的结果显着增强了现有 Nd 2 (SO 4 ) 3和 Dy 2 (SO 4 ) 3溶解度数据存储库。这些特殊的系统经过精心选择,旨在模拟从离子吸附粘土中提取稀土元素 (REE) 的过程。尽管如此,这项研究的意义超出了这一范围,并与涉及在硫酸盐环境中处理稀土元素的各种程序相关。这些发现的一个突出应用在于热力学模型的增强,特别是集成到 OLI 软件中的 MSE 模型。通过纳入这一新数据集,OLI 软件有望成为预测和模拟稀土硫酸盐系统化学的更有效工具。这一进展为未来的研究工作和工业应用带来了重大前景,其中稀土行为的精确建模至关重要。

更新日期:2023-12-15
down
wechat
bug