当前位置:
X-MOL 学术
›
Nano Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Molecular Orbital Insights into Plasmon-Induced Methane Photolysis
Nano Letters ( IF 9.6 ) Pub Date : 2023-11-02 , DOI: 10.1021/acs.nanolett.3c03467 Daqiang Chen 1, 2 , Yimin Zhang 3 , Sheng Meng 1, 2, 4
Nano Letters ( IF 9.6 ) Pub Date : 2023-11-02 , DOI: 10.1021/acs.nanolett.3c03467 Daqiang Chen 1, 2 , Yimin Zhang 3 , Sheng Meng 1, 2, 4
Affiliation
As a promising way to reduce the temperature for conventional thermolysis, plasmon-induced photocatalysis has been utilized for the dehydrogenation of methane. Here we probe the microscopic dynamic mechanism for plasmon-induced methane dissociation over a tetrahedral Ag20 nanoparticle with molecular orbital insights using time-dependent density functional theory. We ingeniously built the relationship between the chemical bonds and molecular orbitals via Hellmann–Feynman forces. The time- and energy-resolved photocarrier analysis shows that the indirect hot hole transfer from the Ag nanoparticle to methane dominates the photoreaction at low laser intensity, due to the strong hybridization of the Ag nanoparticle and CH4 orbitals, while indirect and direct charge transfer coexist to facilitate methane dissociation in intense laser fields. Our findings can be used to design novel methane photocatalysts and highlight the broad prospects of the molecular orbital approach for adsorbate–substrate systems.
中文翻译:
等离激元诱导甲烷光解的分子轨道洞察
作为降低传统热解温度的一种有前景的方法,等离激元诱导的光催化已被用于甲烷脱氢。在这里,我们利用依赖于时间的密度泛函理论,通过分子轨道洞察,探讨了四面体 Ag 20纳米颗粒上等离激元诱导的甲烷解离的微观动力学机制。我们通过赫尔曼-费曼力巧妙地建立了化学键和分子轨道之间的关系。时间和能量分辨光载流子分析表明,由于Ag纳米粒子和CH 4轨道的强杂化,从Ag纳米粒子到甲烷的间接热空穴转移在低激光强度下主导光反应,而间接和直接电荷转移共存以促进强激光场中甲烷的解离。我们的研究结果可用于设计新型甲烷光催化剂,并强调分子轨道方法在吸附物-底物系统中的广阔前景。
更新日期:2023-11-02
中文翻译:
等离激元诱导甲烷光解的分子轨道洞察
作为降低传统热解温度的一种有前景的方法,等离激元诱导的光催化已被用于甲烷脱氢。在这里,我们利用依赖于时间的密度泛函理论,通过分子轨道洞察,探讨了四面体 Ag 20纳米颗粒上等离激元诱导的甲烷解离的微观动力学机制。我们通过赫尔曼-费曼力巧妙地建立了化学键和分子轨道之间的关系。时间和能量分辨光载流子分析表明,由于Ag纳米粒子和CH 4轨道的强杂化,从Ag纳米粒子到甲烷的间接热空穴转移在低激光强度下主导光反应,而间接和直接电荷转移共存以促进强激光场中甲烷的解离。我们的研究结果可用于设计新型甲烷光催化剂,并强调分子轨道方法在吸附物-底物系统中的广阔前景。