当前位置: X-MOL 学术Ionics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of sintering temperature on the morphology and electrochemical properties of LiMn0.5Fe0.5PO4/C synthesized via solid state method
Ionics ( IF 2.8 ) Pub Date : 2023-08-30 , DOI: 10.1007/s11581-023-05176-8
Li Wang , Yanwen Sun , Yin Li , Zhaokun Xuan , Yaochun Yao

LiMn0.5Fe0.5PO4 cathode materials were prepared via a low-cost solid-state method and mixed with sucrose and then calcined at different temperatures. The structure, morphology, and electrochemical performance of the synthesized material were analyzed via X-ray diffraction, scanning electron microscopy-energy dispersive spectroscopy, high-resolution transmission electron microscopy, galvanostatic charge–discharge tests, cyclic voltammetry, and electrochemical impedance spectroscopy. The results showed that materials prepared via the solid-state method contained nanosized particles with a good olivine structure and exhibited excellent particle dispersibility at various sintering temperatures, resulting in high electrochemical performance. Moreover, at a high sintering temperature of 650 ℃, the battery material exhibited the highest conductivity and lithium-ion diffusion coefficient of 150.9 Ω and 2.15 × 10−5 S cm−1, respectively. The material featured a high discharge specific capacity of 110.0 mAh g−1 at a current density of 5 C owing to its good dispersion and regular spherical particle morphology obtained at 650 ℃. The electrochemical properties of battery materials were directly affected by the improvement and optimization of the parameters in the preparation process.



中文翻译:

烧结温度对固相法合成LiMn0.5Fe0.5PO4/C形貌及电化学性能的影响

LiMn 0.5 Fe 0.5 PO 4通过低成本固相法制备正极材料,并与蔗糖混合,然后在不同温度下煅烧。通过X射线衍射、扫描电子显微镜-能量色散谱、高分辨率透射电子显微镜、恒电流充放电测试、循环伏安法和电化学阻抗谱分析了合成材料的结构、形貌和电化学性能。结果表明,固相法制备的材料含有橄榄石结构良好的纳米颗粒,在不同的烧结温度下均表现出优异的颗粒分散性,从而具有较高的电化学性能。而且,在650℃的高温烧结下,分别为-5 S cm -1。由于其良好的分散性和在650 ℃下获得的规则球形颗粒形貌,该材料在5 C电流密度下具有110.0 mAh g -1的高放电比容量。制备过程中参数的改进和优化直接影响电池材料的电化学性能。

更新日期:2023-08-30
down
wechat
bug