当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spatially-resolved investigation of CO2 methanation over Ni/γ-Al2O3 and Ni3.2Fe/γ-Al2O3 catalysts in a packed-bed reactor
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2023-06-02 , DOI: 10.1016/j.cej.2023.143847
Akash Bhimrao Shirsath , Mariam L. Schulte , Bjarne Kreitz , Steffen Tischer , Jan-Dierk Grunwaldt , Olaf Deutschmann

CO2 methanation via the Sabatier reaction with (green) H2 is promising due to its role in achieving a carbon–neutral energy balance in the context of Power-to-Gas technologies. Since Ni-based catalysts are relatively inexpensive compared to other metals and exhibit high catalytic activity, they are most commonly used. Due to the exothermic nature of the reaction, strong temperature and concentration gradients occur, which influence the catalyst structure. Thus, revealing the effects of structural changes of the catalyst along the reactor bed on local activity and selectivity is essential. A 1D packed-bed reactor model was used for numerical simulations, coupled with detailed microkinetics and mass transport limitations. The simulation results are compared with axially-resolved concentration and temperature profiles over 17 wt% Ni/γ-Al2O3 and 17 wt% Ni3.2Fe/γ-Al2O3 catalysts at oven temperatures of 623 K and 723 K. Using additional information from structural spatially-resolved synchrotron-based operando X-ray absorption spectroscopy studies, the oxidation state of Ni was considered in modeling the reactor by changing the catalytically active surface area along the reactor. Predicted surface coverages are compared with surface species experimentally determined by diffuse reflectance infrared Fourier transform spectroscopy. Overall, this study demonstrates the importance of combining modeling with spatially-resolved and temperature-dependent experiments to improve multiscale models and make predictions more accurate.



中文翻译:

填充床反应器中 Ni/γ-Al2O3 和 Ni3.2Fe/γ-Al2O3 催化剂上 CO2 甲烷化的空间分辨研究

通过与(绿色)H 2的 Sabatier 反应进行CO 2甲烷化由于其在电转气技术背景下实现碳中性能量平衡的作用,因此前景广阔。由于镍基催化剂与其他金属相比相对便宜并且具有高催化活性,因此最常用。由于反应的放热性质,会出现强烈的温度和浓度梯度,从而影响催化剂结构。因此,揭示催化剂沿反应床的结构变化对局部活性和选择性的影响至关重要。一维填充床反应器模型用于数值模拟,并结合详细的微观动力学和传质限制。将模拟结果与超过 17 wt% Ni/γ-Al 2 O 3的轴向分辨浓度和温度曲线进行了比较和 17 wt% Ni 3.2 Fe/γ-Al 2 O 3催化剂在 623 K 和 723 K 的烘箱温度下。使用来自基于结构空间分辨同步加速器的原位 X 射线吸收光谱研究的附加信息 Ni 的氧化态为通过改变沿反应器的催化活性表面积来模拟反应器。将预测的表面覆盖率与通过漫反射红外傅里叶变换光谱实验确定的表面物种进行比较。总的来说,这项研究证明了将建模与空间分辨和温度相关实验相结合以改进多尺度模型并使预测更准确的重要性。

更新日期:2023-06-02
down
wechat
bug