当前位置: X-MOL 学术Inorg. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Control of Hole Density in Russellite Bi2WO6 via Intentional Chemical Doping
Inorganic Chemistry ( IF 4.6 ) Pub Date : 2023-06-01 , DOI: 10.1021/acs.inorgchem.3c00591
Makoto Minohara 1 , Yuka Dobashi 1, 2 , Naoto Kikuchi 1 , Seiya Suzuki 2 , Akane Samizo 2 , Takashi Honda 3, 4 , Keishi Nishio 2 , Yoshihiro Aiura 1
Affiliation  

Based on the fundamental design concept of modulating the valence band maximum of oxides and subsequent predictions through computational approaches, several lone-pair ns2-based p-type oxide semiconductors, such as Sn2+- or Bi3+-based complex oxides, have been developed. Thus far, the bandgap can be modified via tuning of the chemical composition, whereas the hole density cannot be intentionally controlled because of the poor chemical stability of Sn2+ and/or the formation of oxygen vacancies. The inability to control hole density prohibits the design and realization of emergent electronic devices based on p- and n-type oxide semiconductors. Herein, we report the control of hole density via intentional chemical doping in polycrystalline Bi2WO6. While the holes of polycrystalline Nb- or Ta-doped Bi2WO6 are strongly trapped by grain boundaries, the hole density obtained at high temperatures monotonically increases with the increase in the doping concentration. This study provides important insights into the development of practical p-type oxide semiconductors.

中文翻译:

通过有意化学掺杂控制罗素体 Bi2WO6 中的空穴密度

基于调制氧化物价带最大值的基本设计理念和随后通过计算方法的预测,几种孤对ns 2基p型氧化物半导体,如Sn 2+ - 或Bi 3+基复合氧化物,已经开发了。到目前为止,可以通过调整化学成分来改变带隙,而由于 Sn 2+的化学稳定性差,无法有意控制空穴密度和/或氧空位的形成。无法控制空穴密度阻碍了基于 p 型和 n 型氧化物半导体的新兴电子设备的设计和实现。在此,我们报告了通过在多晶 Bi 2 WO 6中进行有意化学掺杂来控制空穴密度。虽然多晶Nb-或Ta-掺杂的Bi 2 WO 6的空穴被晶界强烈捕获,但在高温下获得的空穴密度随着掺杂浓度的增加而单调增加。这项研究为实用 p 型氧化物半导体的发展提供了重要的见解。
更新日期:2023-06-01
down
wechat
bug