当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
From 0D to 3D: Controllable synthesis of ammonium vanadate materials for Zn2+ storage with superior rate performance and cycling stability
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2023-06-01 , DOI: 10.1016/j.cej.2023.143816
Gaopeng Li , Yang Su , Shuang Zhou , Jiajie Shen , Dongtao Liu , Shuhui Lv , Jinxian Wang , Wensheng Yu , Xiangting Dong , Xinlu Wang

Vanadium-based materials are one of the most promising cathodes for aqueous zinc ion batteries owing to their adjustable layered structure and high specific capacity. However, the sluggish Zn2+ diffusion kinetics and inferior structural stability still hinder their further development. Here, selective control of the structure of ammonium vanadate (NVO) materials is successfully achieved by a simple hydrothermal method, and the relationship between structure and performance is clarified. It was found that the amount of citric acid in the precursor solution is a vital factor for this morphology evolution. Density functional theory calculations show that the oxygen vacancies could modulate the electron structure of NVO and effectively weaken the electrostatic interaction between Zn2+ and the NVO lattice. Benefitting from the isotropic structure with abundant oxygen vacancies, the amorphous NVO nanodots exhibit superior reaction kinetics. The specific energy of 148.5 Wh kg−1 was achieved at a power density of 3300 W kg−1, along with a high capacity retention of 81% even after 5000 cycles at 5 A g−1. This work not only provides a new strategy for the controllable synthesis of vanadium-based materials but also reveals the great application potential of amorphous materials in metal-ion batteries.



中文翻译:

从 0D 到 3D:用于 Zn2+ 存储的钒酸铵材料的可控合成,具有优异的倍率性能和循环稳定性

钒基材料由于其可调节的层状结构和高比容量而成为最有前途的水系锌离子电池正极之一。然而,缓慢的Zn 2+扩散动力学和较差的结构稳定性仍然阻碍了它们的进一步发展。在这里,通过简单的水热法成功地实现了钒酸铵 (NVO) 材料结构的选择性控制,并阐明了结构与性能之间的关系。发现前体溶液中柠檬酸的量是这种形态演变的重要因素。密度泛函理论计算表明,氧空位可以调节NVO的电子结构,有效削弱Zn 2+之间的静电相互作用和 NVO 晶格。得益于具有丰富氧空位的各向同性结构,非晶 NVO 纳米点表现出优异的反应动力学。在 3300 W kg -1的功率密度下实现了 148.5 Wh kg -1的比能量,并且即使在 5 A g -1下经过 5000 次循环后仍具有 81% 的高容量保持率。该工作不仅为钒基材料的可控合成提供了新的策略,也揭示了非晶材料在金属离子电池中的巨大应用潜力。

更新日期:2023-06-04
down
wechat
bug