当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fabricating 1D stretchable fiber-shaped electronics based on inkjet printing technology for wearable applications
Nano Energy ( IF 16.8 ) Pub Date : 2023-05-31 , DOI: 10.1016/j.nanoen.2023.108574
Chi Zhang , Lei Zhang , Zhihua Pu , Bo Bao , Wenyu Ouyang , Dachao Li

Advanced microfabrication on small and curved fiber surfaces remains a critical challenge and an urgent need to develop high-performance fiber-shaped electronics and advance the next generation of wearable electronics technology. In this study, we propose the preparation of 1D stretchable fiber-shaped electronics via inkjet printing technology for wearable applications. Utilizing self-built precision rotary inkjet printing equipment and a surface chemical modification process, we achieve high-precision and customizable microfabrication onto ultra-low diameter fiber surfaces (minimum printing line width of 133 µm and a printable fiber diameter as low as 500 µm with a large curvature of 4000 m−1). More importantly, this fabricating method is non-destructive and can prepare 1D stretchable conductors by printing conductive inks with stretchable structures and optimizing various synthetic fibers, which exhibit remarkable conductivity, mechanical stability, and strain-insensitive properties in practical applications. Furthermore, we demonstrate the performance of several 1D stretchable electronics applications, including a fiber-shaped electrothermal device, triboelectric strain sensor, and supercapacitor. Our work will greatly promote the development of 1D fiber-shaped electronics and smart textiles with wearability, high performance, functional diversification, and low cost.



中文翻译:

基于可穿戴应用的喷墨打印技术制造一维可拉伸纤维状电子产品

在小而弯曲的纤维表面上进行先进的微加工仍然是一项严峻的挑战,也是开发高性能纤维状电子产品和推进下一代可穿戴电子技术的迫切需要。在这项研究中,我们提出通过喷墨打印技术为可穿戴应用准备一维可拉伸纤维状电子产品。利用自建的精密轮转喷墨打印设备和表面化学改性工艺,在超低直径纤维表面(最小打印线宽133 µm,可打印纤维直径低至500 µm, 4000 m −1的大曲率). 更重要的是,这种制造方法是非破坏性的,可以通过印刷具有可拉伸结构的导电油墨和优化各种合成纤维来制备一维可拉伸导体,在实际应用中表现出显着的导电性、机械稳定性和应变不敏感特性。此外,我们还展示了几种一维可拉伸电子应用的性能,包括纤维形电热装置、摩擦电应变传感器和超级电容器。我们的工作将极大地促进具有耐磨性、高性能、功能多样化和低成本的一维纤维形电子产品和智能纺织品的发展。

更新日期:2023-06-01
down
wechat
bug