当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A gradient “Ceramic-in-Ionogel” electrolyte with tidal ion flow for ultra-stable lithium metal batteries
Nano Energy ( IF 16.8 ) Pub Date : 2023-05-29 , DOI: 10.1016/j.nanoen.2023.108571
Qinqin Ruan , Meng Yao , Shuangjiang Luo , Wei Zhang , Chang-Jun Bae , Zewei Wei , Haitao Zhang

Composite solid-state electrolytes are considered as key components for safe and high-energy-density lithium metal batteries, given their superior mechanical properties and ion conductive kinetics. However, it still remains a challenge to simultaneously guarantee high ionic conductivity and excellent interfacial compatibility. Herein, a gradient “Ceramic-in-Ionogel” electrolyte with tidal ion flow is proposed for decoupling ionic conductivity and interfacial property. It is composed of poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP))/EMIMTFSI/Al2O3 (30 wt. %) layer (Ionogel-dual30) toward cathode and P(VDF-HFP)/EMIMTFSI/Al2O3 (50 wt. %) layer (Ionogel-dual50) to Li-metal anode. Ionogel-dual50 can provide a relatively large number of Al2O3 particles for the formation of AlF3 and Li3AlF6 after being offered electrons at lithium-metal anode and carbon-fluorine bond cleavage in TFSI-, resulting in rapid Li+ transfer and insulated electron transport at interface. Both simulation and experimental characterization suggest that the tidal-flow-like ion transport pathway can offer [Li+-NMP]-P(VDF-HFP) dominant pathway in Ionogel-dual30 and [Li(TFSI)x]+-Al2O3 interface dominant pathway in Ionogel-dual50, achieving a high ionic conductivity of 0.25 mS cm−1. Benefiting from these unique merits, the cycling performance of symmetric Li batteries was greatly improved with a lifetime of over 1000 h at 0.1 mA h cm−2. The effect of this gradient ionogel electrolyte could be well demonstrated in various full cells, evidenced by substantially enhanced cyclability under large current density (2 C), wide voltage range (3–4.5 V) and extreme conditions. This novel “Ceramic-in-Ionogel” electrolyte with tidal ion flow will accelerate the commercialization of high-energy-density lithium metal batteries.



中文翻译:

用于超稳定锂金属电池的具有潮汐离子流的梯度“Ceramic-in-Ionogel”电解质

鉴于其优异的机械性能和离子传导动力学,复合固态电解质被认为是安全和高能量密度锂金属电池的关键组成部分。然而,同时保证高离子电导率和优异的界面相容性仍然是一个挑战。在此,提出了一种具有潮汐离子流的梯度“Ceramic-in-Ionogel”电解质,用于分离离子电导率和界面特性。它由朝向阴极的聚偏二氟乙烯-共六氟丙烯 (P(VDF-HFP))/EMIMTFSI/Al 2 O 3 (30 wt. %) 层 (Ionogel-dual30) 和 P(VDF-HFP)/ EMIMTFSI/Al 2 O 3(50 wt. %) 层 (Ionogel-dual50) 到锂金属阳极。Ionogel-dual50在锂金属负极提供电子和TFSI -中的碳氟键断裂后,可以提供较多的Al 2 O 3颗粒用于AlF 3和Li 3 AlF 6的形成,从而快速形成Li +界面处的转移和绝缘电子传输。模拟和实验表征均表明,类似潮汐流的离子传输途径可以在 Ionogel-dual30 和 [Li(TFSI) x ] + -Al 2 O中提供 [Li + -NMP]-P(VDF-HFP) 主导途径3个Ionogel-dual50 中的界面主导通路,实现了 0.25 mS cm -1的高离子电导率。受益于这些独特的优点,对称锂电池的循环性能大大提高,在 0.1 mA h cm -2下的寿命超过 1000 小时。这种梯度离子凝胶电解质的效果可以在各种全电池中得到很好的证明,在大电流密度 (2 C)、宽电压范围 (3-4.5 V) 和极端条件下显着增强的循环能力证明了这一点。这种具有潮汐离子流的新型“Ceramic-in-Ionogel”电解质将加速高能量密度锂金属电池的商业化。

更新日期:2023-06-01
down
wechat
bug