当前位置: X-MOL 学术Resour. Conserv. Recycl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A system dynamics model for end-of-life management of electric vehicle batteries in the US: Comparing the cost, carbon, and material requirements of remanufacturing and recycling
Resources, Conservation and Recycling ( IF 11.2 ) Pub Date : 2023-05-27 , DOI: 10.1016/j.resconrec.2023.107061
Dipti Kamath , Sharlissa Moore , Renata Arsenault , Annick Anctil

End-of-life (EOL) electric vehicle (EV) batteries can be remanufactured into second-life batteries (SLBs) for residential and utility-level stationary storage applications. However, it is important from a sustainability perspective to assess that there is no increase in material requirement, cost, or carbon footprint of lithium-ion batteries by adding a remanufacturing stage before recycling. A system dynamics model is developed to evaluate the changing EOL battery availability, the change in virgin raw material demand, net present economic value, and carbon footprint of EV batteries with the added remanufacturing stage in the US from 2020 to 2050 depending on the battery state-of-health and battery chemistry over time. We find that compared to recycling, remanufacturing can reduce the life-cycle carbon footprint of the EV battery by 2–17%, by reducing the virgin raw material mined for new batteries.

Extended abstract

End-of-life (EOL) electric vehicle (EV) batteries can either be recycled or remanufactured into second-life batteries (SLBs) for residential and utility-level stationary storage applications. There is a lot of research and policy efforts to support SLB for storage application based on the assumption that using the remaining battery capacity after the in-vehicle use will be environmentally beneficial. However, remanufacturing could negatively impact new EV battery manufacturing by reducing recycled material availability, thereby increasing mining. It is important from a sustainability perspective to ensure that there is no increase in material requirement, cost, or carbon footprint of lithium-ion batteries by adding a remanufacturing stage before recycling. A system dynamics model is developed to evaluate the changing EOL battery availability, the change in virgin raw material demand, net present economic value, and carbon footprint of EV batteries with the added remanufacturing stage in the US from 2020 to 2050 depending on the battery state-of-health and battery chemistry over time. We find that compared to recycling, remanufacturing can reduce the life-cycle carbon footprint of the EV battery by 2–17%, by reducing the virgin raw material mined for new batteries. However, as new battery prices decrease in the long term, the net present economic value of remanufacturing decreases, reducing the overall EOL economic value of the recycling with added remanufacturing stage. This reduction can be compensated for by providing subsidies and incentives for SLBs, which can increase profit.



中文翻译:

美国电动汽车电池报废管理的系统动力学模型:比较再制造和回收的成本、碳和材料要求

报废 (EOL) 电动汽车 (EV) 电池可以再制造为二次电池 (SLB),用于住宅和公用事业级固定存储应用。然而,从可持续性的角度来看,重要的是要评估在回收前增加再制造阶段不会增加锂离子电池的材料要求、成本或碳足迹。开发了一个系统动力学模型来评估 2020 年至 2050 年美国根据电池状态增加再制造阶段的 EV 电池不断变化的 EOL 电池可用性、原始原材料需求的变化、净现经济价值和碳足迹-随着时间的推移,健康和电池化学。我们发现,与回收利用相比,再制造可以将 EV 电池的生命周期碳足迹减少 2-17%,

扩展摘要

报废 (EOL) 电动汽车 (EV) 电池可以回收或再制造为二次电池 (SLB),用于住宅和公用事业级固定存储应用。有很多研究和政策努力支持 SLB 用于存储应用,基于这样的假设,即使用车载使用后的剩余电池容量将对环境有益。然而,再制造可能会减少回收材料的可用性,从而增加采矿量,从而对新电动汽车电池制造产生负面影响。从可持续性的角度来看,通过在回收前增加再制造阶段来确保不会增加锂离子电池的材料要求、成本或碳足迹非常重要。开发了一个系统动力学模型来评估不断变化的 EOL 电池可用性,从 2020 年到 2050 年,随着美国再制造阶段的增加,纯原材料需求、净现经济价值和碳足迹的变化取决于电池的健康状况和电池化学随时间的推移。我们发现,与回收利用相比,再制造通过减少为新电池开采的原始原材料,可以将 EV 电池的生命周期碳足迹减少 2-17%。然而,随着新电池价格长期下降,再制造的净现经济价值下降,从而降低了回收再制造阶段的整体 EOL 经济价值。这种减少可以通过为 SLB 提供补贴和激励来补偿,这可以增加利润。2020 年至 2050 年美国增加再制造阶段的 EV 电池的碳足迹,具体取决于电池的健康状况和电池化学随时间的推移。我们发现,与回收利用相比,再制造通过减少为新电池开采的原始原材料,可以将 EV 电池的生命周期碳足迹减少 2-17%。然而,随着新电池价格长期下降,再制造的净现经济价值下降,从而降低了回收再制造阶段的整体 EOL 经济价值。这种减少可以通过为 SLB 提供补贴和激励来补偿,这可以增加利润。2020 年至 2050 年美国增加再制造阶段的 EV 电池的碳足迹,具体取决于电池的健康状况和电池化学随时间的推移。我们发现,与回收利用相比,再制造通过减少为新电池开采的原始原材料,可以将 EV 电池的生命周期碳足迹减少 2-17%。然而,随着新电池价格长期下降,再制造的净现经济价值下降,从而降低了回收再制造阶段的整体 EOL 经济价值。这种减少可以通过为 SLB 提供补贴和激励来补偿,这可以增加利润。通过减少为新电池开采的原始原材料,再制造可以将 EV 电池的生命周期碳足迹减少 2-17%。然而,随着新电池价格长期下降,再制造的净现经济价值下降,从而降低了回收再制造阶段的整体 EOL 经济价值。这种减少可以通过为 SLB 提供补贴和激励来补偿,这可以增加利润。通过减少为新电池开采的原始原材料,再制造可以将 EV 电池的生命周期碳足迹减少 2-17%。然而,随着新电池价格长期下降,再制造的净现经济价值下降,从而降低了回收再制造阶段的整体 EOL 经济价值。这种减少可以通过为 SLB 提供补贴和激励来补偿,这可以增加利润。

更新日期:2023-05-27
down
wechat
bug