当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Indoloindole-Based Hole Transporting Material for Efficient and Stable Perovskite Solar Cells Exceeding 24% Power Conversion Efficiency
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2023-05-26 , DOI: 10.1002/aenm.202300219
Dong Won Kim 1 , Kang‐Hoon Choi 2 , Seung Hwa Hong 1 , Hyun‐Sik Kang 2 , Ji Eon Kwon 1, 3 , Sungjin Park 1 , Byeong‐Kwan An 2 , Soo Young Park 1
Affiliation  

The new concept of hole transporting materials (HTMs) has inspired researchers to develop high-performing and stable perovskite solar cells (PSCs). In particular, small molecular organic semiconductors have been extensively studied for HTM due to their high reproducibility and easy synthesis. In this work, a novel linear-type series of indoloindole (IDID)-based hole transporting materials comprising a fluorinated IDID core(IDIDF) and multiple thiophene rings is developed. The structure-property relationship in the IDIDF derivatives is investigated systematically by changing the alkyl position and length of the backbone. The intrinsic properties of the material are significantly different depending on the alkyl position of inner thiophene ring. The optimized material exhibits improved solubility, favorable molecular packing patterns, and superior hole mobility. The champion PSCs using the optimum molecule, IDIDF2, yield a power conversion efficiency of 23.16% in non-doped and 24.24% in doped conditions, which represent one of the highest performances in n-i-p planar device configuration. For the first time, the IDIDF2-based PSCs achieve outstanding thermal and moisture stabilities under thermal aging (85 °C) and relative humidity of 85%, respectively, for 1500 h.

中文翻译:

用于高效稳定钙钛矿太阳能电池的吲哚并吲哚基空穴传输材料功率转换效率超过24%

空穴传输材料(HTM)的新概念激发了研究人员开发高性能且稳定的钙钛矿太阳能电池(PSC)。特别是,小分子有机半导体由于其高再现性和易于合成而在 HTM 方面得到了广泛的研究。在这项工作中,开发了一种新型线性系列吲哚吲哚(IDID)基空穴传输材料,包含氟化IDID核(IDIDF)和多个噻吩环。通过改变主链的烷基位置和长度,系统地研究了IDIDF衍生物的结构-性质关系。根据噻吩内环烷基位置的不同,材料的固有性能显着不同。优化后的材料表现出改善的溶解度、有利的分子堆积模式,和卓越的空穴迁移率。使用最佳分子 IIDDF2 的冠军 PSC 在非掺杂条件下的功率转换效率为 23.16%,在掺杂条件下的功率转换效率为 24.24%,这代表了 nip 平面器件配置中的最高性能之一。基于IDIDF2的PSC首次在热老化(85°C)和85%相对湿度下分别实现了1500小时出色的热稳定性和湿度稳定性。
更新日期:2023-05-26
down
wechat
bug