当前位置: X-MOL 学术Front. Marine Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Pick-up of fluoroquinolones from the aqueous phase via magnetically propeled microrobots: kinetics, thermodynamics, and site energy distribution analysis
Frontiers in Marine Science ( IF 2.8 ) Pub Date : 2023-05-26 , DOI: 10.3389/fmars.2023.1169883
Yongzheng Tang , Wenpeng Jia , Mutai Bao , Shengyao Qiu , YongRui Pi , Chongfeng Liu , Jinchen Zhao

Removing fluoroquinolones (FQs) in marine culture tailwater is crucial for the coastal marine environment. The application of a bacteria-based microrobot for FQ removal was discussed. Norfloxacin (NOR) and levofloxacin (LEV) had static maximum adsorption capacities of 114.8 and 49.4 mg/g, respectively, by a magnetic microrobot. The experimental results of NOR adsorption by a magnetic microrobot were well supported by the Langmuir isotherm and Elovich kinetic models. Both the Langmuir isotherm model and the pseudo-second-order kinetic model may be able to accurately represent the LEV adsorption process. The mass transfer mechanism of the NOR and LEV adsorptions was divided into two steps and described better using the intraparticle diffusion (IPD) model. The exothermic and spontaneity of the sorption process were demonstrated through the study of thermodynamics. The magnetic microrobot’s heterogeneous surface was validated by the examination of site energy distribution. Additionally, this study demonstrated that the majority of the NOR and LEV sorption took place at sites with energies over 4.25 and 17.36 kJ/mol, respectively, supporting the notion that NOR and LEV adsorption constitute physical–chemical processes. Based on the above results, a magnetic microrobot, as a new-style green bio-adsorbent, can potentially be used to remove NOR and LEV from the mariculture in an inexpensive and effective manner.

中文翻译:

通过磁力推进微型机器人从水相中提取氟喹诺酮类药物:动力学、热力学和位点能量分布分析

去除海洋养殖尾水中的氟喹诺酮类 (FQ) 对沿海海洋环境至关重要。讨论了基于细菌的微型机器人在 FQ 去除中的应用。磁性微型机器人对诺氟沙星 (NOR) 和左氧氟沙星 (LEV) 的静态最大吸附容量分别为 114.8 和 49.4 mg/g。Langmuir 等温线和 Elovich 动力学模型很好地支持了磁性微型机器人吸附 NOR 的实验结果。Langmuir 等温线模型和伪二级动力学模型都可能能够准确地表示 LEV 吸附过程。NOR 和 LEV 吸附的传质机制分为两个步骤,并使用粒子内扩散 (IPD) 模型更好地描述。通过热力学研究证明了吸附过程的放热性和自发性。通过检查站点能量分布来验证磁性微型机器人的异质表面。此外,这项研究表明,大部分 NOR 和 LEV 吸附发生在能量分别超过 4.25 和 17.36 kJ/mol 的位置,支持 NOR 和 LEV 吸附构成物理化学过程的观点。基于上述结果,磁性微型机器人作为一种新型绿色生物吸附剂,有可能以廉价且有效的方式用于从海水养殖中去除 NOR 和 LEV。这项研究表明,大部分 NOR 和 LEV 吸附发生在能量分别超过 4.25 和 17.36 kJ/mol 的位置,支持 NOR 和 LEV 吸附构成物理化学过程的观点。基于上述结果,磁性微型机器人作为一种新型绿色生物吸附剂,有可能以廉价且有效的方式用于从海水养殖中去除 NOR 和 LEV。这项研究表明,大部分 NOR 和 LEV 吸附发生在能量分别超过 4.25 和 17.36 kJ/mol 的位置,支持 NOR 和 LEV 吸附构成物理化学过程的观点。基于上述结果,磁性微型机器人作为一种新型绿色生物吸附剂,有可能以廉价且有效的方式用于从海水养殖中去除 NOR 和 LEV。
更新日期:2023-05-26
down
wechat
bug