当前位置: X-MOL 学术Agric. For. Meteorol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Extended growing seasons and decreases in hydrologic connectivity indicate increasing water stress in humid, temperate forests
Agricultural and Forest Meteorology ( IF 5.6 ) Pub Date : 2023-05-24 , DOI: 10.1016/j.agrformet.2023.109525
Katie A. McQuillan , Taehee Hwang , Katherine L. Martin

Forested headwater catchments are important sources of stable and abundant freshwater resources. Interactions between vegetation and topography influence lateral hydrologic connectivity by altering shallow subsurface flow paths. This in turn influences vegetation density along those paths, and subsequent hydrologic partitioning between localized water use and subsurface flows at catchment scales. Climate change impacts on forests, and the degree to which they reshape feedbacks between evapotranspiration (ET) and hydrologic connectivity, remain unclear. To clarify the extent and drivers of changing lateral hydrologic connectivity, we assessed relative changes in upslope to downslope vegetation density using the Normalized Difference Vegetation Index (NDVI) from 1984 – 2021 in 30,044 forested catchments across the Southern Appalachian Mountains. Increasing upslope NDVI relative to downslope NDVI was used as a proxy for decreasing lateral hydrologic connectivity. We then related changes in connectivity to climate and streamflow dynamics across 28 sub-regional reference watersheds. We found decreases in the ratio of downslope to upslope NDVI in almost half of the catchments (48.5%), primarily due to increasing upslope NDVI. This indicates increasing ET upslope and a decline in lateral hydrologic subsidy to downslope given precipitation. This was also supported by faster streamflow recession and increasing ET estimates relative to precipitation in over half of reference watersheds. The strongest predictor of decreasing connectivity was growing season minimum temperature (Tmin), which increased in 88% of catchments (Mean R2 = 0.27 +/- 0.13). While Tmin is not a dominant atmospheric driver of ET, this pattern has been closely linked to lengthened growing seasons. This suggests that alteration of lateral hydrologic connectivity is mainly driven by ecophysiological responses to changing climate rather than directly by atmospheric drivers. Our results emphasize the importance of vegetation dynamics shifting hydrologic partitioning and driving water limitations even in humid, temperate forests.



中文翻译:

生长季节的延长和水文连通性的降低表明潮湿温带森林中的水分压力增加

森林覆盖的源头集水区是稳定和丰富的淡水资源的重要来源。植被和地形之间的相互作用通过改变浅层地下水流路径影响横向水文连通性。这反过来会影响沿这些路径的植被密度,以及随后在集水区尺度上局部用水和地下流量之间的水文分区。气候变化对森林的影响,以及它们在多大程度上重塑蒸发蒸腾 (ET) 和水文连通性之间的反馈,仍不清楚。为了阐明横向水文连通性变化的程度和驱动因素,我们使用归一化差异植被指数 (NDVI) 评估了 1984 年至 2021 年间南阿巴拉契亚山脉 30,044 个森林集水区上坡与下坡植被密度的相对变化。相对于下坡 NDVI 增加上坡 NDVI 被用作减少横向水文连通性的代理。然后,我们将连通性的变化与 28 个次区域参考流域的气候和水流动态联系起来。我们发现在几乎一半的流域 (48.5%) 中,下坡与上坡 NDVI 的比率有所下降,这主要是由于上坡 NDVI 的增加。这表明在给定降水情况下,ET 上坡的增加和对下坡的侧向水文补贴下降。这也得到了更快的水流衰退和增加的 ET 估计相对于一半以上参考流域降水量的支持。连通性下降的最强预测因子是生长季最低温度(然后,我们将连通性的变化与 28 个次区域参考流域的气候和水流动态联系起来。我们发现在几乎一半的流域 (48.5%) 中,下坡与上坡 NDVI 的比率有所下降,这主要是由于上坡 NDVI 的增加。这表明在给定降水情况下,ET 上坡的增加和对下坡的侧向水文补贴下降。这也得到了更快的水流衰退和增加的 ET 估计相对于一半以上参考流域降水量的支持。连通性下降的最强预测因子是生长季最低温度(然后,我们将连通性的变化与 28 个次区域参考流域的气候和水流动态联系起来。我们发现在几乎一半的流域 (48.5%) 中,下坡与上坡 NDVI 的比率有所下降,这主要是由于上坡 NDVI 的增加。这表明在给定降水情况下,ET 上坡的增加和对下坡的侧向水文补贴下降。这也得到了更快的水流衰退和增加的 ET 估计相对于一半以上参考流域降水量的支持。连通性下降的最强预测因子是生长季最低温度(主要是由于上坡 NDVI 的增加。这表明在给定降水情况下,ET 上坡的增加和对下坡的侧向水文补贴下降。这也得到了更快的水流衰退和增加的 ET 估计相对于一半以上参考流域降水量的支持。连通性下降的最强预测因子是生长季最低温度(主要是由于上坡 NDVI 的增加。这表明在给定降水情况下,ET 上坡的增加和对下坡的侧向水文补贴下降。这也得到了更快的水流衰退和增加的 ET 估计相对于一半以上参考流域降水量的支持。连通性下降的最强预测因子是生长季最低温度(T min ),在 88% 的流域中增加(平均 R 2  = 0.27 +/- 0.13)。虽然T min不是 ET 的主要大气驱动因素,但这种模式与延长的生长季节密切相关。这表明横向水文连通性的改变主要是由生态生理学对气候变化的反应驱动的,而不是直接由大气驱动因素驱动的。我们的结果强调了即使在潮湿的温带森林中植被动态改变水文分区和驱动水限制的重要性。

更新日期:2023-05-24
down
wechat
bug