当前位置: X-MOL 学术Biomass Bioenergy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimization of pelletization process conditions and binder concentration for production of fuel pellets from oat hull and quality evaluation
Biomass & Bioenergy ( IF 5.8 ) Pub Date : 2023-05-23 , DOI: 10.1016/j.biombioe.2023.106825
Tumpa R. Sarker , Venu Babu Borugadda , Venkatesh Meda , Ajay K. Dalai

Conversion of low-value agricultural residues into biofuels, especially fuel pellets is a promising technique, and the fuel pellet can be used for combustion, co-combustion in boilers and furnace for the generation of heat and power in power plants. Bio-based additives such as mustard meal and bio-oil derived from softwood via pyrolysis have been used as binder for the formulation of oat hull pellets. Central composite design was used to find the different conditions of formulation as well as to optimize the formulation for high quality pellet. Three parameters including the concentration (wt.%, db) of mustard meal (10–20), bio-oil (5-15) and water (8-12) were used as input factors while the response factors were durability index, hardness, relaxed density and moisture uptake rate of fuel pellets. The highest durability, density and mechanical strength was found for pellet formed from 15 wt% of bio-oil, 10 wt% of mustard meal and 8 wt% of water. Pyrolysis bio-oil is the most influential factor that significantly affected pellet properties while the effect of mustard meal as binder is frivolous. Moreover, pelletization operating conditions were also optimized using pelletization force (3000–4500 N), die temperature (90–110°C) and relaxation time (15–60 s) while the die diameter was constant at 6 mm. The pellet quality improved with higher die temperature and pelletization force, but the effect of holding time is insignificant. Computed tomography (CT) analysis reveal that addition of bio-oil significantly decreased the porosity of pellet and thus contributed in enhancing the mechanical strength of pellets.



中文翻译:

燕麦壳燃料颗粒制粒工艺条件和粘结剂浓度优化及质量评价

将低价值的农业废弃物转化为生物燃料,尤其是燃料颗粒是一项很有前途的技术,燃料颗粒可用于锅炉和熔炉中的燃烧、混燃,用于发电厂的热能发电。生物基添加剂,如芥末粉和通过热解从软木中提取的生物油,已被用作燕麦壳颗粒配方的粘合剂。中心复合设计用于寻找不同的配方条件以及优化优质颗粒的配方。以芥末粉(10-20)、生物油(5-15)和水(8-12)的浓度(wt.%, db)三个参数作为输入因子,响应因子为耐久指数、硬度,放宽了燃料颗粒的密度和吸湿率。最高的耐用性,发现由 15 wt% 的生物油、10 wt% 的芥末粉和 8 wt% 的水形成的颗粒的密度和机械强度。热解生物油是显着影响颗粒性能的最有影响力的因素,而芥末粉作为粘合剂的影响是微不足道的。此外,还使用造粒力 (3000–4500 N)、模具温度 (90–110°C) 和松弛时间 (15–60 s) 优化造粒操作条件,同时模具直径恒定为 6 mm。颗粒质量随模具温度和造粒力的提高而提高,但保温时间的影响不显着。计算机断层扫描 (CT) 分析表明,添加生物油可显着降低颗粒的孔隙率,从而有助于提高颗粒的机械强度。10 wt% 的芥末粉和 8 wt% 的水。热解生物油是显着影响颗粒性能的最有影响力的因素,而芥末粉作为粘合剂的影响是微不足道的。此外,还使用造粒力 (3000–4500 N)、模具温度 (90–110°C) 和松弛时间 (15–60 s) 优化造粒操作条件,同时模具直径恒定为 6 mm。颗粒质量随模具温度和造粒力的提高而提高,但保温时间的影响不显着。计算机断层扫描 (CT) 分析表明,添加生物油可显着降低颗粒的孔隙率,从而有助于提高颗粒的机械强度。10 wt% 的芥末粉和 8 wt% 的水。热解生物油是显着影响颗粒性能的最有影响力的因素,而芥末粉作为粘合剂的影响是微不足道的。此外,还使用造粒力 (3000–4500 N)、模具温度 (90–110°C) 和松弛时间 (15–60 s) 优化造粒操作条件,同时模具直径恒定为 6 mm。颗粒质量随模具温度和造粒力的提高而提高,但保温时间的影响不显着。计算机断层扫描 (CT) 分析表明,添加生物油可显着降低颗粒的孔隙率,从而有助于提高颗粒的机械强度。热解生物油是显着影响颗粒性能的最有影响力的因素,而芥末粉作为粘合剂的影响是微不足道的。此外,还使用造粒力 (3000–4500 N)、模具温度 (90–110°C) 和松弛时间 (15–60 s) 优化造粒操作条件,同时模具直径恒定为 6 mm。颗粒质量随模具温度和造粒力的提高而提高,但保温时间的影响不显着。计算机断层扫描 (CT) 分析表明,添加生物油可显着降低颗粒的孔隙率,从而有助于提高颗粒的机械强度。热解生物油是显着影响颗粒性能的最有影响力的因素,而芥末粉作为粘合剂的影响是微不足道的。此外,还使用造粒力 (3000–4500 N)、模具温度 (90–110°C) 和松弛时间 (15–60 s) 优化造粒操作条件,同时模具直径恒定为 6 mm。颗粒质量随模具温度和造粒力的提高而提高,但保温时间的影响不显着。计算机断层扫描 (CT) 分析表明,添加生物油可显着降低颗粒的孔隙率,从而有助于提高颗粒的机械强度。模具温度 (90–110°C) 和松弛时间 (15–60 s),模具直径恒定为 6 mm。颗粒质量随模具温度和造粒力的提高而提高,但保温时间的影响不显着。计算机断层扫描 (CT) 分析表明,添加生物油可显着降低颗粒的孔隙率,从而有助于提高颗粒的机械强度。模具温度 (90–110°C) 和松弛时间 (15–60 s),模具直径恒定为 6 mm。颗粒质量随模具温度和造粒力的提高而提高,但保温时间的影响不显着。计算机断层扫描 (CT) 分析表明,添加生物油可显着降低颗粒的孔隙率,从而有助于提高颗粒的机械强度。

更新日期:2023-05-23
down
wechat
bug