当前位置: X-MOL 学术Biomass Bioenergy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Eco-friendly synthesis of l-Cysteine incorporated Swiss cheese-like carbon from Artocarpus heterophyllus peel waste for high performance symmetric supercapacitor
Biomass & Bioenergy ( IF 5.8 ) Pub Date : 2023-05-17 , DOI: 10.1016/j.biombioe.2023.106826
Dhilip kumar Chinnalagu , Balaji Murugesan , Mayakrishnan Arumugam , Selvanathan Ganesan , Sundrarajan Mahalingam

Due to their exceptional properties, developing a new nanostructured material inspired by biomaterials is one of the most alluring topics. With the aid of l-cysteine, we synthesized a novel type of N and S-doped mesoporous carbon (NSC3) derived from Artocarpus heterophyllus peel that has a Swiss cheese-like structure. Capacitive energy storage differs from other electrochemical energy storage, which renders less charging time and delivers more power than batteries. Importantly, low energy density is considered a pivotal limitation to this technique, so considerable interest has been inducing pseudocapacitance to EDL-Capacitive material for efficient energy storage. The BET findings determined a high surface area of 1896.32 m2g-1 for NSC3 and transformation of micro to mesopore with a pore diameter of 2.86 nm from 1.92 nm with successive addition of l-cysteine. Trastii's plot delivers 36.6% as diffusion and 63.4% as EDL-Capacitive behavior for NSC3, also met the requirements of semi-pseudocapacitive type with an improved specific capacitance of 433Fg-1 at 1Ag-1 current density. Even at a high-power density of 6875 W kg−1, the constructed NSC3//NSC3 symmetric device delivered an enhanced energy density of 7.84 Wh Kg−1 and maintained 88.53% of its original capacitance for 10,000 consecutive cycles.



中文翻译:

用于高性能对称超级电容器的 l-半胱氨酸的环保合成结合了来自异叶木果皮废料的瑞士奶酪样碳

由于其卓越的性能,开发一种受生物材料启发的新型纳米结构材料是最诱人的话题之一。在l-半胱氨酸的帮助下,我们合成了一种新型的 N 和 S 掺杂介孔碳 (NSC3),它来源于异叶木果皮,具有类似瑞士奶酪的结构。电容式储能不同于其他电化学储能,与电池相比,它可以缩短充电时间并提供更多电量。重要的是,低能量密度被认为是该技术的关键限制,因此相当大的兴趣是将赝电容引入 EDL 电容材料以实现高效储能。BET 结果确定了 1896.32 m 2 g -1的高表面积对于 NSC3 和微孔向孔径从 1.92 nm 到 2.86 nm 的中孔转化,连续添加l-半胱氨酸。Trastii 的绘图为 NSC3 提供了 36.6% 的扩散和 63.4% 的 EDL 电容行为,也满足半赝电容类型的要求,在 1Ag -1 电流密度下具有 433Fg -1 的改进电容即使在 6875 W kg -1的高功率密度下,构建的 NSC3//NSC3 对称器件也能提供 7.84 Wh Kg -1的增强能量密度,并在 10,000 个连续循环中保持其原始电容的 88.53%。

更新日期:2023-05-18
down
wechat
bug