当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A ferromagnetic tribo-cilia enhanced triboelectric-electromagnetic hybrid generator with superior performance in contact-noncontact sliding motion
Nano Energy ( IF 16.8 ) Pub Date : 2023-05-18 , DOI: 10.1016/j.nanoen.2023.108538
Kangda Wang , Daoyu Sun , Siyu Li , Mingyang Liu , Wei Liu , Zhizhu He , Wei Tang , Zhenming Li , Yongling Lu , Zhen Wang , Zhenghe Song , Zhongxiang Zhu , Zhen Li

One of the most challenging problems of sliding mode triboelectric nanogenerators (TEGs) is the mechanical wear occurring at the surface of triboelectric layers. Compromising by enlarging the frictional distance to reduce this wear conversely deteriorates the output performance of TEGs. This work presents a strategic path for addressing this problem by incorporating the ferromagnetic tribo-medium into a flexible cilium structure. Based on a rotational freestanding sliding mode, we have developed a highly integrated triboelectric-electromagnetic hybrid generator (TEHG) that combines a ferromagnetic cilia based TEG (FC-TEG) and a printed multi-layer winding based electromagnetic generator (PMW-EMG). Interestingly, contrary to the conventional notion that the outstanding performance of TEGs is usually performed under compressed friction, the FC-TEG achieved its highest output at the critical contact/noncontact state (0 mm clearance). Compared to the ordinary flat film without doping ferromagnetic material, the FC-TEG at 500 rpm exhibited increments of 71.9 %, 100 %, and 87.4 % in open-circuit voltage, short-circuit current, and transferred charge, respectively, while accompanied with a resistance torque of only 20.8 % of the former. Further experimental findings have demonstrated that TEG and EMG exhibit a mutually complementary relationship in coordinating motion frequency and electrical output across varying rotational speed conditions. Under laboratory testing conditions, the output power and power density of the FC-TEG reached 442.5 μW and 41.2 mW/m2, respectively, while those of the PMW-EMG achieved 3.0 W and 17.5 mW/cm3. With this TEHG, we successfully drove a variety of sensors for monitoring information in agricultural environment and machinery. This study provides new insights and solutions for using ferromagnetic materials to address mechanical wear problems with enhanced performance in sliding TEGs.



中文翻译:

一种在接触-非接触滑动运动中具有优异性能的铁磁摩擦-纤毛增强型摩擦电-电磁混合发电机

滑动模式摩擦纳米发电机 (TEG) 最具挑战性的问题之一是摩擦电层表面发生的机械磨损。通过扩大摩擦距离来减少这种磨损的妥协反而会降低 TEG 的输出性能。这项工作提出了通过将铁磁摩擦介质结合到柔性纤毛结构中来解决这一问题的战略途径。基于旋转独立滑动模式,我们开发了一种高度集成的摩擦电-电磁混合发电机 (TEHG),它结合了基于铁磁纤毛的 TEG (FC-TEG) 和基于印刷多层绕组的电磁发电机 (PMW-EMG)。有趣的是,与 TEG 的出色性能通常是在压缩摩擦下表现的传统观念相反,FC-TEG 在临界接触/非接触状态(0 毫米间隙)下实现了最高输出。与未掺杂铁磁材料的普通平面薄膜相比,FC-TEG 在 500 rpm 时的开路电压、短路电流和转移电荷分别增加了 71.9%、100% 和 87.4%,同时伴随着阻力矩仅为前者的 20.8%。进一步的实验结果表明,TEG 和 EMG 在不同转速条件下协调运动频率和电输出方面表现出相互补充的关系。在实验室测试条件下,FC-TEG的输出功率和功率密度分别达到442.5 μW和41.2 mW/m 与未掺杂铁磁材料的普通平面薄膜相比,FC-TEG 在 500 rpm 时的开路电压、短路电流和转移电荷分别增加了 71.9%、100% 和 87.4%,同时伴随着阻力矩仅为前者的 20.8%。进一步的实验结果表明,TEG 和 EMG 在不同转速条件下协调运动频率和电输出方面表现出相互补充的关系。在实验室测试条件下,FC-TEG的输出功率和功率密度分别达到442.5 μW和41.2 mW/m 与未掺杂铁磁材料的普通平面薄膜相比,FC-TEG 在 500 rpm 时的开路电压、短路电流和转移电荷分别增加了 71.9%、100% 和 87.4%,同时伴随着阻力矩仅为前者的 20.8%。进一步的实验结果表明,TEG 和 EMG 在不同转速条件下协调运动频率和电输出方面表现出相互补充的关系。在实验室测试条件下,FC-TEG的输出功率和功率密度分别达到442.5 μW和41.2 mW/m 而阻力矩仅为前者的 20.8%。进一步的实验结果表明,TEG 和 EMG 在不同转速条件下协调运动频率和电输出方面表现出相互补充的关系。在实验室测试条件下,FC-TEG的输出功率和功率密度分别达到442.5 μW和41.2 mW/m 而阻力矩仅为前者的 20.8%。进一步的实验结果表明,TEG 和 EMG 在不同转速条件下协调运动频率和电输出方面表现出相互补充的关系。在实验室测试条件下,FC-TEG的输出功率和功率密度分别达到442.5 μW和41.2 mW/m2分别达到 3.0 W 和 17.5 mW/cm 3的 PMW-EMG 。有了这个 TEHG,我们成功地驱动了各种用于监测农业环境和机械信息的传感器。这项研究为使用铁磁材料解决机械磨损问题提供了新的见解和解决方案,同时增强了滑动 TEG 的性能。

更新日期:2023-05-19
down
wechat
bug