当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cathode Materials and Chemistries for Magnesium Batteries: Challenges and Opportunities
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2023-05-11 , DOI: 10.1002/aenm.202300682
Zhenyou Li 1, 2 , Joachim Häcker 3 , Maximilian Fichtner 1, 4 , Zhirong Zhao‐Karger 1, 4
Affiliation  

Rechargeable magnesium batteries hold promise for providing high energy density, material sustainability, and safety features, attracting increasing research interest as post-lithium batteries. With the progressive development of Mg electrolytes with enhanced (electro-)chemical stability, tremendous efforts have been devoted to the exploration of high-energy cathode materials. In this review, recent findings related to Mg cathode chemistry are summarized, focusing on the strategies that promote Mg2+ diffusion by targeting its interaction with the cathode hosts. The critical role of the cathode–electrolyte interfaces is elaborated, which remains largely unexplored in Mg systems. The approaches to optimization of cathode–electrolyte combinations to unlock the kinetic limitations of Mg2+ diffusion, enabling fast electrochemical processes of the cathodes, are highlighted. Furthermore, representative conversion chemistries and coordination chemistries that bypass bulk Mg2+ diffusion are discussed, with particular attention given to their key challenges and prospects. Finally, the hybrid systems that combine the fast kinetics of the monovalent cathode chemistries and high-capacity Mg anodes are revisited, calling for further practical evaluation of this promising strategy. All in all, the aim is to provide fundamental insights into the cathode chemistry, which promotes the material development and interfacial regulations toward practical high-performance Mg batteries.

中文翻译:

镁电池阴极材料和化学成分:挑战与机遇

可充电镁电池有望提供高能量密度、材料可持续性和安全特性,作为后锂电池吸引了越来越多的研究兴趣。随着具有增强(电)化学稳定性的镁电解质的不断发展,人们对高能正极材料的探索做出了巨大的努力。在这篇综述中,总结了与 Mg 阴极化学相关的最新发现,重点关注通过靶向其与阴极主体的相互作用来促进 Mg 2+扩散的策略。详细阐述了阴极-电解质界面的关键作用,这在镁系统中很大程度上仍未得到探索。优化阴极-电解质组合以解锁 Mg 2+动力学限制的方法强调了扩散,使阴极能够实现快速电化学过程。此外,讨论了绕过大量 Mg 2+扩散的代表性转化化学和配位化学,特别关注它们的关键挑战和前景。最后,重新审视了结合一价阴极化学的快速动力学和高容量镁阳极的混合系统,呼吁对这一有前景的策略进行进一步的实际评估。总而言之,目的是提供对阴极化学的基本见解,从而促进材料开发和界面调节,实现实用的高性能镁电池。
更新日期:2023-05-11
down
wechat
bug