当前位置: X-MOL 学术Chem. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biological and Bioinspired Thermal Energy Regulation and Utilization
Chemical Reviews ( IF 51.4 ) Pub Date : 2023-05-10 , DOI: 10.1021/acs.chemrev.3c00136
Shun An 1 , Boning Shi 1 , Modi Jiang 1 , Benwei Fu 1 , Chengyi Song 1 , Peng Tao 1 , Wen Shang 1 , Tao Deng 1, 2
Affiliation  

The regulation and utilization of thermal energy is increasingly important in modern society due to the growing demand for heating and cooling in applications ranging from buildings, to cooling high power electronics, and from personal thermal management to the pursuit of renewable thermal energy technologies. Over billions of years of natural selection, biological organisms have evolved unique mechanisms and delicate structures for efficient and intelligent regulation and utilization of thermal energy. These structures also provide inspiration for developing advanced thermal engineering materials and systems with extraordinary performance. In this review, we summarize research progress in biological and bioinspired thermal energy materials and technologies, including thermal regulation through insulation, radiative cooling, evaporative cooling and camouflage, and conversion and utilization of thermal energy from solar thermal radiation and biological bodies for vapor/electricity generation, temperature/infrared sensing, and communication. Emphasis is placed on introducing bioinspired principles, identifying key bioinspired structures, revealing structure–property–function relationships, and discussing promising and implementable bioinspired strategies. We also present perspectives on current challenges and outlook for future research directions. We anticipate that this review will stimulate further in-depth research in biological and bioinspired thermal energy materials and technologies, and help accelerate the growth of this emerging field.

中文翻译:

生物和仿生热能调节与利用

由于从建筑物到冷却大功率电子设备、从个人热管理到追求可再生热能技术等应用中对加热和冷却的需求不断增长,热能的调节和利用在现代社会中变得越来越重要。经过数十亿年的自然选择,生物有机体进化出了独特的机制和精致的结构,用于高效、智能地调节和利用热能。这些结构还为开发具有非凡性能的先进热工程材料和系统提供了灵感。在这篇综述中,我们总结了生物和仿生热能材料和技术的研究进展,包括通过隔热、辐射冷却、蒸发冷却和伪装,以及来自太阳热辐射和生物体的热能的转换和利用,用于蒸汽/发电、温度/红外传感和通信。重点介绍仿生原理,识别关键仿生结构,揭示结构-性能-功能关系,并讨论有前途且可实施的仿生策略。我们还提出了对当前挑战的看法和对未来研究方向的展望。我们预计本次综述将促进生物和仿生热能材料和技术的进一步深入研究,并有助于加速这一新兴领域的发展。太阳热辐射和生物体热能的转换和利用,用于蒸汽/发电、温度/红外传感和通信。重点介绍仿生原理,识别关键仿生结构,揭示结构-性能-功能关系,并讨论有前途且可实施的仿生策略。我们还提出了对当前挑战的看法和对未来研究方向的展望。我们预计本次综述将促进生物和仿生热能材料和技术的进一步深入研究,并有助于加速这一新兴领域的发展。太阳热辐射和生物体热能的转换和利用,用于蒸汽/发电、温度/红外传感和通信。重点介绍仿生原理,识别关键仿生结构,揭示结构-性能-功能关系,并讨论有前途且可实施的仿生策略。我们还提出了对当前挑战的看法和对未来研究方向的展望。我们预计本次综述将促进生物和仿生热能材料和技术的进一步深入研究,并有助于加速这一新兴领域的发展。识别关键的仿生结构,揭示结构-性质-功能关系,并讨论有前途且可实施的仿生策略。我们还提出了对当前挑战的看法和对未来研究方向的展望。我们预计本次综述将刺激生物和仿生热能材料和技术的进一步深入研究,并有助于加速这一新兴领域的发展。识别关键的仿生结构,揭示结构-性质-功能关系,并讨论有前途且可实施的仿生策略。我们还提出了对当前挑战的看法和对未来研究方向的展望。我们预计本次综述将促进生物和仿生热能材料和技术的进一步深入研究,并有助于加速这一新兴领域的发展。
更新日期:2023-05-10
down
wechat
bug