当前位置: X-MOL 学术Prog. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The role of interstitial constituents in refractory complex concentrated alloys
Progress in Materials Science ( IF 33.6 ) Pub Date : 2023-05-05 , DOI: 10.1016/j.pmatsci.2023.101140
Calvin H. Belcher , Benjamin E. MacDonald , Diran Apelian , Enrique J. Lavernia

To meet the growing demand for transportation and energy consumption around the world, more efficient turbine engines and power generators with higher operating temperatures are needed, which require alloys with retained strength levels at elevated temperatures. In the past decade, refractory complex concentrated alloys (RCCAs) have gained prominence through numerous reports of superior strengths at higher homologous temperatures compared to those of conventional refractory and super alloys. However, these RCCAs, comprised of transition metals from subgroups IV, V, and VI, tend to be brittle at room temperature, hindering their broad applicability. Recent findings reveal that interstitial constituents may significantly contribute to, and convolute observations of, the ductility and strength of RCCAs at room temperature. This review of the literature examines and discusses the field’s current understanding of the role of interstitial constituents, specifically oxygen and nitrogen, in the microstructure and mechanical behavior of RCCAs. Moreover, we provide context derived from the binary interactions of interstitial constituents with refractory metals and their contribution to the development and processing of conventional refractory alloys as a framework to gain insight into interstitial constituent mechanisms in RCCAs. In some cases, the mechanisms of interstitial constituents in RCCAs are similar to those of unalloyed subgroup VI transition metals and their dilute alloys, segregating to and embrittling grain boundaries. In other cases, interstitial constituents can be accommodated in solid solution, strengthening the RCCA, similar to interstitial constituents soluble in unalloyed subgroup IV and V metals and their dilute alloys. With the understanding of interstitial constituent element interactions with RCCA constituents, more holistic approaches to the design of RCCAs are suggested to engineer the mechanisms of intended and unintended interstitial constituents through alloy design and processing. For the development of strong and ductile RCCAs, the interactions between interstitial constituents and RCCA constituents and their resulting mechanisms must be understood and controlled.



中文翻译:

间隙成分在难熔复杂浓缩合金中的作用

为了满足全球日益增长的运输和能源消耗需求,需要具有更高工作温度的更高效的涡轮发动机和发电机,这需要合金在高温下保持强度水平。在过去的十年中,与传统耐火合金和超级合金相比,耐火复合浓缩合金 (RCCA) 通过在较高同源温度下具有更高强度的大量报道而受到关注。然而,这些 RCCA 由来自 IV、V 和 VI 亚族的过渡金属组成,在室温下往往很脆,阻碍了它们的广泛应用。最近的研究结果表明,间质成分可能对 RCCA 在室温下的延展性和强度有显着影响,并对其进行复杂的观察。这篇文献综述检查并讨论了该领域目前对间隙成分(特别是氧和氮)在 RCCA 微观结构和机械行为中的作用的理解。此外,我们提供了源自间隙成分与难熔金属的二元相互作用及其对传统难熔合金开发和加工的贡献的背景,作为深入了解 RCCA 间隙成分机制的框架。在某些情况下,RCCA 中间隙成分的机制类似于非合金的第 VI 亚族过渡金属及其稀合金,偏析到晶界并使晶界脆化。在其他情况下,间隙成分可以容纳在固溶体中,加强 RCCA,类似于可溶于非合金亚族 IV 和 V 金属及其稀释合金的间隙成分。随着对间隙成分与 RCCA 成分相互作用的理解,建议采用更全面的 RCCA 设计方法,通过合金设计和加工来设计预期和非预期间隙成分的机制。为了开发强韧的 RCCA,必须了解和控制间质成分和 RCCA 成分之间的相互作用及其产生的机制。建议采用更全面的 RCCA 设计方法,通过合金设计和加工来设计预期和非预期间隙成分的机制。为了开发强韧的 RCCA,必须了解和控制间质成分和 RCCA 成分之间的相互作用及其产生的机制。建议采用更全面的 RCCA 设计方法,通过合金设计和加工来设计预期和非预期间隙成分的机制。为了开发强韧的 RCCA,必须了解和控制间质成分和 RCCA 成分之间的相互作用及其产生的机制。

更新日期:2023-05-05
down
wechat
bug